4

World Wide Web, Wikipedia, and
Social Networks

4.1 Introduction

Among the various services working on the Internet, one of the most successful has been
the World Wide Web (WWW). In spite of the difference between the two services, even
now it is common to find people interchangeably using internet (the physical device)
for the WWW (the set of media and documents connected by hyperlinks). The success
of the WWW has been immense. It represents the largest construction made by man,
it encompasses most of world knowledge, it allows the exchange of information and
feelings between people (even if physically very far apart) and it has become the
environment in which different projects such as Wikipedia (an on-line encyclopaedia
in almost every language of the world); Facebook (initially a system to stay in touch
with a “restricted” group of friend, but now also a platform for messaging, mailing, e-
commerce, and a source of news and information), and other social networks (RenRen
operating in China, VK operating in Russia), and also a site for microblogging such
as Twitter.

The WWW bases its success on the potential offered by the hypertext markup
language (html). Thanks to this language it is possible to link documents and media
with each other creating a network of information. Based on this idea, Tim Berners
Lee (a collaborator of the physics laboratory CERN) decided in 1989 to put together
some material in a series of pages that could be “browsed” with a specific piece of
software. In such a delocalised structure it then becomes necessary to specify the
location where the information is stored. This is possible thanks to the protocols of
address for servers on the Internet. In any case the Internet numerical structure (i.e.
an address of the kind 193.67.163.111) is rather uninformative and too restricted to
keep track of all documents. As a result, WWW developed a series of addresses of the
form “www.oup.com”. Thanks to a hierarchical classification, an almost infinite series
of documents can be mapped below this address. The mapping is stored in specific
servers named “domain name servers (DNS)”.

From the very beginning, many institutions, companies and private individuals
put their information on line, and at the same time people worldwide started building
their personal and business home pages. As the number of pages started to grow it was
necessary to have a “telephone list” of the information present on the system. The first
and most obvious solution was to compile a topical list. Web searching was mostly done
through a page of a company named Yahoo! (yet another hierarchical officious oracle
), which was an “officious” list of links organised hierarchically. This meant that any

Data Science and Complex Networks. First Edition. Guido Caldarelli and Alessandro Chessa.
(© Guido Caldarelli and Alessandro Chessa 2016. Published in 2016 by Oxford University
Press.

64 World Wide Web, Wikipedia, and Social Networks

new page had to be found and put manually into this artificial taxonomy to be present
in the list. This task became more and more difficult as the numbers exploded (where
and how to find all new pages?) and the content became more and more complex (how
to assess the category of a web page?) to classify. Codes, data and/or links for this
chapter are available from http://book.complexnetworks.net.

4.2 Data from various sources
4.2.1 WWW

The WWW is a classic example of big data. Often described as the largest coherent
structure created by humans; actually its size (in the order of tens of billions) only
refers to the static pages. Indeed, some web pages are created on demand (think of
web pages for the days in a calendar) when users look for them, so that the real size of
the WWW is virtually infinite. It is therefore of the utmost importance to be able to
handle these series of data, and whenever possible to consider properly defined subsets
of them. To that purpose we would suggest starting an exploration of the web from a
set of databases collected by the Laboratory for web algorithmics of the University of
Milan, Italy.

e At http://law.di.unimi.it we can find information on this site;

e http://law.di.unimi.it/datasets.php contains a series of data collected and stored
in compressed form;

e http://webgraph.di.unimi.it/ contains information about the Webgraph com-
pressed graph format and instructions on how to extract it.

On this site one can download crawls of the web of different sizes: “small” ones
to test software (about 10° sites) to larger ones (about 10° —107 sites). The pro-
cedure for getting networks from these compressed files is not simple and for the
benefit of the reader we have performed this task, generating a “ready to use”

edge list, particularly related to a portion of the European domain name “.eu
(http://law.di.unimi.it/webdata/eu-2005/).

Code for loading the “.eu” portion of the WWW in 2005

import networkx as nx

#defining the eu directed graph

eu_DG=nx.DiGraph ()

#retrieve just the portion of the first 1M edges of the .eu domain

#crawled in 2005

eu_DG=nx.read_edgelist(’./data/eu-2005_1M.arcs’, \
create_using=nx.DiGraph())

#generate the dictionary of node_is -> urls

file_urls=open(’./data/eu-2005.urls’)

count=0

dic_nodid_urls={}

Data from various sources 65

while True:
next_line=file_urls.readline()
if not next_line:
break
next_line[:-1]
dic_nodid_urls[str(count)]=next_line[:-1]
count=count+1
file_urls.close()

#generate the strongly connected component

scc=[(len(c),c) for c in sorted(nx.strongly_connected_components \
(eu_DG), key=len, reverse=True)] [0] [1]

eu_DG_SCC = eu_DG.subgraph(scc)

4.2.2 Twitter

Twitter (twitter.com) is a microblogging platform, which is a service that allows its
users to exchange short comments (“tweets”). Its rapid success has now made it possi-
ble to track down messages and their forwarding (“retweets”) to millions of bloggers.
In Twitter, each user has an account from which it is possible to write up to 140
characters in “tweets” to followers. Some users have tens of thousands of followers,
others much fewer. Such “following” relationship is not reciprocal (i.e. if A follows
B, not necessarily does B follow A). Twitter and Facebook are two clear cases where
networks help in measuring social relationships. In particular they are a typical case of
study of the new computational social science(Lazer et al., 2009; Gongalves et al., 2011;
Del Vicario et al., 2016) Twitter provides application programming interfaces (APIs) to
access tweets and information about tweets and users (https://dev.twitter.com/docs).
The Python module for interacting with the Twitter API is Twython and can be
reached from this link: https://twython.readthedocs.org/.

Code for the opening of tweets with the API

#To get your own KEYS and TOKENS visit the following page:
#https://dev.twitter.com/docs/auth/tokens-devtwittercom
#(you have to sign in before with your Twitter account)

from twython import Twython

APP_KEY="XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX’
APP_SECRET=" XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX’
OAUTH_TOKEN=" XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX’
OAUTH_TOKEN_SECRET="> XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX’

66 World Wide Web, Wikipedia, and Social Networks

twitter_connection=Twython(APP_KEY, APP_SECRET, \
OAUTH_TOKEN, OAUTH_TOKEN_SECRET)

From here it is now possible to get data from Twitter such as for example, the
tweets from the timeline of the user.

How to get the timeline

#the following tweets and query results
#depend on the KEYS and TOKENS of the user

res=twitter_connection.get_home_timeline()
for t in res[:5]:
#print the text of the first 5 tweets of the actual timeline
print ’Text of the tweet:’,t[u’text’]
#for each tweet print the mentioned users
print ’mentions:’,
for m in t[u’entities’][u’user_mentions’]:
print m[u’screen_name’],
print ’\r’

#0UTPUT

Tweet: Vincere e vinceremo, l’ultimo scandalo del doping di
stato, non il solo eh. https://t.co/8Mzz2RmC3H

mentions:

Tweet: Ad I0 SPAZIO sabato 14 novembre sar\‘a ospite un amico

ed un grande professionista. @michelecucuzza

#gramigna https://t.co/wh5zdph98p

mentions: michelecucuzza

Tweet: RT @Jodinette: #LaPhraseQuiMenerve t’es contre 1l’euthanasie?
T’es contre le droit de mourir dans la dignit\’e!
https://t.co/0xywnSVNGU

mentions: Jodinette

Tweet: 10 days of round the clock curfew. Very harsh policy,
punishes all the people stuck there. https://t.co/eYwlpPET02
mentions:

Tweet: Terrorismo internazionale, Merano crocevia degli aspiranti
jihadisti https://t.co/PvUP9x0chn

mentions:

In the following case we check information about the President of the United States,
Mr. Barak Obama; in particular his location and number of followers.

Data from various sources 67

How to get user information

res=twitter_connection.show_user(screen_name=’@BarackObama’)
print res

print ’location: ’,res[u’location’]

print ’number of followers: ’,res[’followers_count’]

#0UTPUT
{u’follow_request_sent’: False, u’has_extended_profile’:
True, u’profile_use_background_image’: True, u’profile_text_color’:
u’3333337,
u’default_profile_image’: False, u’id’: 813286,
u’profile_background_image_url_https’:
u’https://pbs.twimg.com/profile_background_images/
451819093436268544/kLbRvwBg.png’ ,u’verified’: True,
u’profile_location’: None, u’profile_image_url_https’:
u’https://pbs.twimg.com/profile_images/4510071056391022080/
iulf7brY_normal.png’, u’profile_sidebar_fill_color’: u’C2EQOF6’,
uw’entities’:{u’url’: {u’urls’:[{u’url’: u’http://t.co/05Woad92z1’,
u’indices’: [0, 22], u’expanded_url’:
u’http://www.barackobama.com’, u’display_url’: u’barackobama.com’}]},
u’description’: {u’urls’: [1}},...

location: Washington, DC
number of followers: 65822369

After the Twitter timeline and user information one could be interested in getting
a bunch of tweets related to a particular topic or hashtag. To this end the Twitter
API offers a search function. In the following example we will use it to extract some
tweets in which the hashtag “#ebola” appears.

Retrieving tweets with the “search” function

res=twitter_connection.search(q=’#ebola’, count=2)
for t in res[’statuses’]:
print "Text of the tweet:",t[u’text’]

#0UTPUT

Tweet: Read my interview on Q@CNN about how #Sierraleone can turn
its economy around after #Ebola https://t.co/hmeCKT5RVC

Tweet: Brazil tests man for #Ebola, puts others under observation
https://t.co/0OVGSTPigNK https://t.co/F17Xjzos09

68 World Wide Web, Wikipedia, and Social Networks

Following a similar approach one could start to monitor the activity of a series
of politicians in a given state and, more interestingly, the activity of all users re-
lated to these persons. Various studies have shown clearly how this information could
be extremely valuable for providing an idea of the political situation of a country,
especially around elections time (Eom et al., 2015; Caldarelli et al., 2014; Tumas-
jan et al., 2010; DiGrazia et al., 2013; Albrecht et al., 2007; Adamic and Glance,
2005). An archive of some cured data for Italian political elections is available at
http://www.linkalab.it /data

4.2.3 Wikipedia

Wikipedia is another service based on the WWW. It consists of a series of web pages
written by a very large community of editors, on a variety of different arguments.
In time it became an open access/open edit on-line encyclopaedia, whose reliability
is ensured by the constant control of editors and users. The various pages are inter-
connected (links between existing pages are constantly being created by readers and
editors) forming one of the largest thematic subnetworks of the WWW. For this rea-
son, it has for quite a long time attracted the interest of scientists (Martin, 2011;
Capocci et al., 2006; Zlati¢ et al., 2006). Interest in this subset of WWW pages is
based on a series of reasons.

e Wikipedia is a well defined subgraph of the WWW; indeed it forms a thematic
subset, thereby creating a natural laboratory for WWW studies.

e Over time Wikipedia has developed in different languages, so that various subsets
of Wikipedia of different sizes are now available. Furthermore, Wikipedia networks
allow us to test whether different cultures tend to organise web pages differently.

e All information on the Wikipedia graph is available, even its growth history, with
a time stamp for any additions to the system.

e Wikipedia pages tend (where possible) to cite other Wikipedia pages, so that the
whole system is contained.

In such a (extremely well connected) network it is interesting to see if the links con-
necting two pages (lemmas of the encyclopaedia) determine communities of concepts
and ultimately define a bottom-up taxonomy of reciprocal concepts (as one would
expect). For the purpose of this book it is important to note that all the data about
the present shape of the network (and its growth) is publicly available and can be
downloaded from

e http://dumps.wikimedia.org/

A general introduction to the subject and details of how to manage Wikipedia database
files is presented on the site!. Dumps, varying from the largest dataset of the English
version to smaller samples. We can start from the latter and then move to larger
and larger datasets. In the following, for example, we shall use a small portion of
Wikipedia, that “in Limba Sarda” (Sardinian), which is at the moment formed from
about 4500 articles?. Even though the procedure of querying the Mysql database is

Thttps://meta.wikimedia.org/wiki/Data_dumps
2https://sc.wikipedia.org/

Data from various sources 69

beyond the scope of the present book, we will sketch in the following core the main
steps to extracting the hyperlink information from the dump. But in the end we will
store the link structure and the page titles in a local file that we will use later on to
load and to populate the proper Networkx and dictionary structures. It is possible
to find the structure of the Pagelinks and Page table dumps in the following links:
https://www.mediawiki.org/wiki/Manual:Pagelinks_table
https://www.mediawiki.org/wiki/Manual:Page_table

Opening the Wikipedia Sardinian dump

#You can skip the following cell if you don’t have mysql installed
#and use directly the filesscwiki_edgelist.dat and
#scwiki_page_titles.dat you will find in the ’data’ directory

#open the DB connection

#the scwiki mysql dumps scwiki-20151102-pagelinks.sql and
#scwiki-20151102-page.sql (both in the ’data’ dir) have to be loaded
#in the tables "pagelinks" and "page" of the DB "scwiki_db" (to be
#created) before to launch this procedure through these commands:
#mysql -u<user> -p<password> scwiki_db< scwiki-20151102-pagelinks.sql
#mysql -u<user> -p<password> scwiki_db< scwiki-20151102-page.sql

import _mysql

scwiki_db=_mysql.connect (host="localhost",user="root", \
passwd="mumonkan",db="scwiki_db")

#extract the hyperlinks information with a SQL query
#from the mysql DB and storing them in a local file
scwiki_db.query("""SELECT pagelinks.pl_from, page.page_id
FROM page,pagelinks
WHERE page.page_title=pagelinks.pl_title""")
r=scwiki_db.use_result()
f=open("./data/scwiki_edgelist.dat",’w’)
res=r.fetch_row()
while res!=Q):
f.write(res[0] [0]+" "+res[0] [1]+"\n")
res=r.fetch_row()
f.close()

#extract the title information with a SQL query
#from the mysql DB and storing them in a local file
scwiki_db.query("SELECT page.page_id,page.page_title FROM page")

70 World Wide Web, Wikipedia, and Social Networks

r=scwiki_db.use_result()
f=open("./data/scwiki_page_titles.dat",’w’)
res=r.fetch_row()
while res!=():
f.write(res[0] [0]+" "+res[0] [1]+"\n")
res=r.fetch_row()
f.close()

4.2.4 Wikipedia taxonomy

Since Wikipedia is a means of organising knowledge (Gonzaga et al., 2001), it is in-
teresting to check whether the structures arising from different languages and then
different cultures have some sort of universality (Muchnik et al., 2007; Capocci et al.,
2008). Furthermore the network formed by articles and hyperlinks together could pro-
vide a self-organized way to gather Wikipedia articles into categories; a classification
that it is currently created upon the agreement of the whole Wikipedia community.
The simplest way to create a taxonomy is by use of a tree in the shape of the Linnean
taxonomy of living organisms (Linnaeus, 1735). This topic has been thoroughly stud-
ied over past years. Historically, the complexity (i.e. the fat-tailed distribution of the
number of offspring at the various levels) of the structure of natural taxonomic trees
from plants and animals (Willis and Yule, 1922) led to the Yule model for the growth
of trees (Yule, 1925), where mutations in a population of individuals may eventually
form a series of different species in the same genus.

Such a clean structure does not, unfortunately, fully apply to Wikipedia. Indeed,
articles and categories will not strictly form a perfect tree, since an article or a category
may happen to be the offspring of more than one parent category. For this reason the
taxonomy of articles is represented in this case as a direct acyclic graph. This means
that the taxonomy must be considered only as a soft partition, where the intersection
between classes is different from zero. In this case one deals with (so-called) fuzzy
partitions.

4.3 Bringing order to the WWW

In this section we present a short overview of the various methods that have been
presented and made public to infer the importance (centrality) of pages in the WWW.
Nowadays, modern search engines have (very likely) far more complicated algorithms
and methods, nevertheless the original methods are still important for other cases of
study and they make an excellent stage for presenting important concepts of graph
theory. In the cases of studies that we present here, we define the importance of a page
only topologically i.e. without entering into semantic analysis of the content of a single
page. The first algorithm using such an approach was introduced in 1999 (Kleinberg,
1999) under the name HITS (Hyperlink-Induced Topic Search).

Bringing order to the WWW 71

4.3.1 HITS algorithm

As a first approximation, let’s make a basic differentiation of pages into two categories:
e authorities i.e. pages that contain relevant information (train timetable, food
recipes, formulas of algebra);
e hubs i.e. pages that do not necessarily contain information, but (as with Yahoo!
pages) have links to pages where the information is stored.

Apart from limiting cases, every page 7 has both an authority score au(i) and a hub
score h(i), that are computed via a mutual recursion. In particular we define the
authority of one page as proportional to the sum of the hub scores of the pages pointing
to it,
au(i) o< Y h(j). (4.1)
Jj—1

Similarly, the hub score of one page is proportional to the authority scores of the pages
reached from the hub,

h(i) o<y " au(j). (4.2)

1—]

To ensure convergence of the above recursion, a good method is to normalise the values
of h(i) and a(i) at every iteration such that > ., h(i) = > au(i) = 1.

HITS algorithm

def HITS_algorithm(DG) :
auth={}
hub={}

k=1000 #number of steps

for n in DG.nodes():
auth[n]=1.0
hub[n]=1.0

for k in range(k):

norm=0.0

for n in DG.nodes():
auth[n]=0.0
for p in DG.predecessors(n):

auth [n]+=hub [p]

norm+=auth[n] **2.0

norm=norm**0.5

for n in DG.nodes():
auth[n]=auth[n] /norm

72 World Wide Web, Wikipedia, and Social Networks

norm=0.0
for n in DG.nodes():
hub[n]=0.0

for s in DG.successors(n):
hub [n]+=authl[s]
norm+=hub [n] **2.0
norm=norm**0.5
for n in DG.nodes():
hub [n]=hub[n] /norm

return auth,hub
DG=nx.DiGraph ()

DG.add_edges_from([(’A’,’B’),(’B’,’C?),(’A’,’D’), \
(’D’,’B’),(’C’,’D’),(’C’,’A’)])

#plot the graph
nx.draw(DG,with_labels=True)

(auth,hub)=HITS_algorithm(DG)

print auth
print hub

#0UTPUT

{’A’: 0.31622776601683794, ’C’: 0.31622776601683794,
’B?: 0.6324555320336759, ’D’: 0.6324555320336759}
{’A’: 0.7302967433402215, ’C’: 0.5477225575051661,
’B’: 0.18257418583505539, ’D’: 0.36514837167011077}

4.3.2 Spectral properties

This method can be (qualitatively, not considering the normalisation problems) de-
scribed by means of linear algebra. As seen in the first chapter (see Section 1.3), a
graph can be equivalently represented by means of a matrix of numbers, that is, with
its adjacency matrix, as shown in the graph in Fig. 4.1.

The equation giving rise to the hub score can be written as

ajau(j) — h oc Adi (4.3)
1

h(i) o< Y~ au(j) — h(i) o ‘

n
1—] Jj=

and similarly for the authorities we obtain:

Bringing order to the WWW 73

O O @ >

©O = O O|X»
- O O = |
o o = ol
o = o =|D

©

Fig. 4.1 A simple oriented graph with its adjacency matrix.

au(i) Z h(j) — au(i) Zag;-h(j) — @ ATh, (4.4)

where a;fg- are the elements of the matrix AT that is the transpose of A (this means

that a;fg = Qjj;-

How to transpose and multiply a matrix

def matrix_transpose(M):
M_out=[]
for ¢ in range(len(M[0])):
M_out.append ([])
for r in range(len(M)):
M_out [c] .append (M[r] [c])
return M_out

def matrix_multiplication(M1,M2):
M_out=[]
for r in range(len(M1)):
M_out.append([])
for j in range(len(M2[0])):
e=0.0
for i in range(len(M1[r])):
e+=M1[r] [i]1*M2[i] [j]
M_out [r] .append(e)
return M_out

74 World Wide Web, Wikipedia, and Social Networks

adjacency_matrixi=[
(0,1,0,1],
[1,0,1,1],
[0,1,0,0]
]

adjacency_matrix2=matrix_transpose(adjacency_matrix1l)

print "Transpose adjacency matrix:",adjacency_matrix2
res_mul=matrix_multiplication(adjacency_matrixl,adjacency_matrix2)
print "Matrix multiplication:",res_mul

#0UTPUT

Transpose adjacency matrix: [[0, 1, O], [1, O, 1], [0, 1, O],

[1, 1, 0]]

Matrix multiplication: [[2.0, 1.0, 1.0], [1.0, 3.0, 0.0],
[1.0, 0.0, 1.0]]

By combining (4.3) and (4.4) we obtain

hoc AATh = A\, AAT,
at < ATAdt = M\, ATAd. (4.5)

That is an eigenvalue problem for the matrices M = AA”T and M7T = AT A.

e M (and therefore its transpose) is real and symmetric, so its eigenvalues are real;
e M is non-negative (i.e. the entries are at least 0 or larger); if we can find a k > 0
such that M* >> 0, that is, all of the entries are strictly larger than 0, then M is
primitive. If M is a primitive matrix:
* the largest eigenvalue A of M is positive and of multiplicity 1;
* every other eigenvalue of M is in modulus strictly less than A;
x the largest eigenvalue A has a corresponding eigenvector with all entries pos-
itive.
Being a primitive matrix means in physical terms that the graph defined by the adja-
cency matrix must have no dangling ends or sinks and that it is possible to reach any
page from any starting point. In all of the above hypothesis convergence is ensured.

Principal eigenvalue/vector extraction (power iteration)

adjacency_matrix=[
[0,1,0,1],

Bringing order to the WWW 75

[1,0,1,1],
[0,1,0,0],
[1,1,0,0]
]
vector=[

[0.21],

[0.34],

[0.52],

[0.49]

]

for i in range(100): #100 iterations is enough for the convergence!
res=matrix_multiplication(adjacency_matrix,vector)
norm_sq=0.0
for r in res:
norm_sqg=norm_sq+r [0] *r [0]
vector=[]
for r in res:
vector.append ([r[0]/(norm_sq**0.5)])

print "Maximum eigenvalue (in absolute value):",norm_sq**0.5
print "Eigenvector for the maximum eigenvalue:",vector

#0UTPUT

Maximum eigenvalue (in absolute value): 2.17008648663
Eigenvector for the maximum eigenvalue: [[0.5227207256439814],
[0.6116284573553772], [0.2818451988548684], [0.5227207256439814]]

Starting from the data previously downloaded from the laboratory for web algo-
rithmics of the University of Milan, we can now apply the HITS algorithm to the real
case of the “.eu” portion of the WWW in 2005. The output will be the top urls and
the corresponding auth and hub values.

HITS algorithm for the “.eu” domain in 2005

import operator

(auth,hub)=HITS_algorithm(eu_DG_SCC)

sorted_auth = sorted(auth.items(), key=operator.itemgetter(1))
sorted_hub = sorted(hub.items(), key=operator.itemgetter(1l))

#top ranking auth

76 World Wide Web, Wikipedia, and Social Networks

print "Top 5 auth"
for p in sorted_auth[:5]:
print dic_nodid_urls[p[0]],p[1]

#top ranking hub
print "\nTop 5 hub"
for p in sorted_hub[:5]:
print dic_nodid_urls[p[0]],p[1]

#0OUTPUT

top 5 auth

http://www.etf.eu.int/WebSite.nsf/... 9.67426387995e-05
http://www.etf.eu.int/website.nsf/Pages/Job... 9.67426387995e-05
http://www.etf.eu.int/WebSite.nsf/(tenders... 9.67426387995e-05
http://europa.eu.int/eures/main. jsp?...LV 9.67426387995e-05
http://europa.eu.int/eures/main. jsp?...DE 9.67426387995e-05

top 5 hub

http://www.etf.eu.int/... 7.65711101121e-07
http://ue.eu.int/cms3_fo/showPage.asp... 7.65711101121e-07
http://ue.eu.int/showPage.asp?id=357... 7.65711101121e-07
http://ue.eu.int/showPage.asp?id=370... 7.65711101121e-07
http://www.europarl.eu.int/interp... 7.65711101121e-07

4.3.3 PageRank

HITS is not the only algorithm that assesses the importance of a page by using the
spectral properties of the adjacency matrix (or functions of it). Actually, the most
successful measure of eigenvector centrality is given by another algorithm, known as
PageRank. The idea is similar to that of the HITS algorithm, but now we give only
one score to the pages of the web, irrespective of its role as authority or hub. The
values of PageRank for the various pages in the graph are given by the eigenvector r,
related to the largest eigenvalue A1 of the matrix P, given by

P=aN+(1-ao)E; (4.6)

the weight is taken as o = 0.85 in the original paper (Page et al., 1999). N is the
normalised matrix N = AKO~! where A is the adjacency matrix and KO~ is the
diagonal matrix, whose entries on the diagonal are given by the inverse of the out
degree, (KO™1) . = 1/ky.

This new matrix P does not differ considerably from the original one N, but has
the advantage that (thanks to its irreducibility) its eigenvectors can be computed by
a simple iteration procedure Langville and Meyer (2003).

As we have seen for HITS, dealing with a matrix that is not primitive presents a
series of problems. The presence of dangling nodes avoids N being a stochastic matrix

Bringing order to the WWW 77

o—aq— O

Fig. 4.2 A simple case of reducible matrix.

and therefore gives problems for the existence of the limiting vector r°°, which is the
numerical solution of the equation r = rN. Even worse, almost certainly, the subgraph
represented by N will be reducible. A reducible stochastic matrix is one for which the
underlying chain of transformations is reducible®. A reducible chain, is one for which
there are states in which the evolution can be trapped. The simplest example of a
reducible matrix is that of a page ¢ that has an edge to page j, and this page j has
a loop (citing itself) and a link to another page z which again has a loop (an edge
to itself) (see Fig. 4.2). Iteration on this set will not produce convergence to a limit
vector 7. When the matrix is irreducible, a mathematical theorem (by Perron and
Frobenius) ensures that this chain must have a unique and positive stationary vector
r>° (Perron, 1907; Frobenius, 1912). A physical way to force irreducibility numerically
is to destroy the possibility of getting trapped. If you can jump out from a page to a
completely random different one (even with small probability), the matrix is irreducible
and you can find the eigenvectors r by iteration. This corresponds to adding to the
matrix N another diagonal matrix E whose entries e;; are given by 1/n, where n is
the number of vertices in the graph.*

Compute the PageRank

def pagerank(graph, damping_factor=0.85, max_iterations=100,
min_delta=0.00000001) :

nodes = graph.nodes()

graph_size = len(nodes)

if graph_size ==
return {}

itialize the page rank dict with 1/N for all nodes

3In this case the chain is called a Markov chain, since the state at a certain time of evolution
depends only upon the state at the previous time step.

4In the more recent implementation of PageRank, those entries are actually different from each
other, even if they have the same order of magnitude. This is done in order to introduce an ad hoc
weight for the different pages.

78 World Wide Web, Wikipedia, and Social Networks

pagerank = dict.fromkeys(nodes, (1.0-damping_factor)*1.0/ \
graph_size)
min_value=(1.0-damping_factor)/len(nodes)

for i in range(max_iterations):
diff = O #total difference compared to last iteraction
computes each node PageRank based on inbound links
for node in nodes:
rank = min_value
for referring_page in graph.predecessors(node):
rank += damping_factor * pagerank[referring_pagel/ \
len(graph.neighbors(referring_page))
diff += abs(pagerank[node] - rank)
pagerank[node] = rank

#stop if PageRank has converged
if diff < min_delta:
break

return pagerank

Starting with the following test network, we can apply the Pagerank algorithm
with both our code and the NetworkX corresponding function.

PageRank for a test network

G=nx.DiGraph ()
G.add_edges_from([(1,2),(2,3),(3,4),(3,1),(4,2)])
#plot the network

nx.draw(G)

#our Page Rank algorithm

res_pr=pagerank (G,max_iterations=10000,min_delta=0.00000001, \
damping_factor=0.85)

print res_pr

#Networkx Pagerank function
print nx.pagerank(G,max_iter=10000)

#0UTPUT
{1: 0.17359086186340225, 2: 0.33260446516778386,
3: 0.3202137953926163, 4: 0.17359086304186191}

Bringing order to the WWW 79

@24viaggi

retweet rep|y

@lanuova

@lughene CEG TG E

mention

@VisitTrentino

Fig. 4.3 This is the procedure to generate a network starting from a flux of tweets. The nodes
are the twitter users and each time one of them mentions, retweets or replies to another user
a link is drawn from the first to the second. The weight of a links is the number of citations
between the two.

{1: 0.17359061775974502, 2: 0.33260554622228633,
3: 0.3202132182582236, 4: 0.17359061775974502}

Now we have the opportunity to make sense of this famous algorithm in a real
case in the field of social network analysis. At the beginning of this chapter we learnt
how to retrieve tweets through the Twitter API. With the “search” method we can
get a certain number of tweets and try to uncover the discussion going on related
to the search criteria we have imposed. The first step in this process is to map this
flux of information in the shape of a network and after that try to measure on it some
particular property. More than the so-called structural network of followers and friends,
in order to discover the thread of discussions it is useful to generate the network of
mentions, retweets, and replies. In this case a link is drawn from a user “A” towards
a user “B” if the user “A” mentions user “B” in one of their tweets (see Fig. 4.3).

It is a way of acknowledging someone and giving credit to them, just as happens
when a web page relates to another through a hyperlink. This kind of network is
able to catch the just-in-time interaction among users about a particular topic, much
more than the structural ones. For the present example we will limit ourselves to the
mention network only.

80 World Wide Web, Wikipedia, and Social Networks

Given this procedure we can now apply it to the case of a particular topic and
extract in a natural way the thread of the discussion as the clusters that emerge as
isolated components of the resulting network (see Fig. 4.4).

Generate and plot the Twitter mention network

def generate_network(list_mentions):
DG=nx.DiGraph ()
for 1 in list_mentions:
if len(1)<2: continue
for n in 1[1:]:
if not DG.has_edge(1[0],n):
DG.add_edge(1[0] ,n, weight=1.0)
else:
DG[1[0]] [n] [’weight’]+=1.0
return DG

#extracting user and mentions for each tweet
res=twitter_connection.search(q=’#FutureDecoded’, count=5000)
#the first will be the tweer user
list_users={}
list_mentions=[]
for t in res[’statuses’]:
list_unique_ids=[]
print "User Screen Name and Id:",(t[u’user’][u’screen_name’], \
t[u’user’] [u’id_str’])
list_unique_ids.append(t[u’user’] [u’id_str’])
if not list_users.has_key(t[u’user’] [u’id_str’]):
list_users[t[u’user’] [u’id_str’]]=t[u’user’] [u’screen_name’]
print "List of Mentiomns:",
for m in t[u’entities’] [u’user_mentions’]:
if m[’id_str’]!=t[u’user’] [u’id_str’]:
list_unique_ids.append(m[’id_str’])
if not list_users.has_key(m[’id_str’]):
list_users[m[’id_str’]]=m[u’screen_name’]
print (m[u’screen_name’],m[’id_str’]),
print "\r"
print list_unique_ids
list_mentions.append(list_unique_ids)
print "\n"

net_mentions=generate_network(list_mentions)

#plotting the network

Bringing order to the WWW 81

Fig. 4.4 Plot of the mention network arising from Twitter data. The nodes are the Twitter
users and the oriented links go from one user to another, mentioned by the first in one of
their tweets. In a natural way the threads emerge from the picture as isolated clusters, with
a main one dominating the discussion.

pos=nx.graphviz_layout(net_mentions,prog=’neato’)
nx.draw(net_mentions, pos, node_size = 50, node_color=’Black’)
savefig(’./data/hashtag_discussion_thread.png’,dpi=600)

#0UTPUT

User Screen Name and Id: (u’vincent_salmon’, u’294176299°)

List of Mentions: (u’TagetikUK’, u’3653601856°’) (u’manuelvellutini’
1u’139816639°) (u’MicrosoftUK’, u’720474368°) (u’mspartnersuk’,
u’23672986°) [u’294176299°, u’3653601856°, u’139816639° ,u’720474368°,
u’23672986°]

2

Finally, we can compute the Pagerank on this oriented network getting the most
central nodes (users). In this case the simple interpretation is that the top ranking
users are very likely the most influential(see also (Perra et al., 2009)), in relation to
the selected topic.

82 World Wide Web, Wikipedia, and Social Networks

Top Pageranks on a Twitter generated network (influencers)

pr=nx.pagerank(net_mentions,max_iter=10000)
sorted_pr=sorted(pr.items(), key=operator.itemgetter(l),reverse=True)
#topl0 pagerank twitter user from the selected search
for page in sorted_pr[:10]:

print list_users[pagel[0]],pagel[1]

#0UTPUT

microsoftitalia 0.0504950565972
GiacomoFrisoni 0.0480209549756
satyanadella 0.0359068749876
MSFTBusinessUK 0.0350727368583
FabioSantini71 0.032280683387
Microsoft 0.0234986623942
federicadestr 0.022313707312
purassan 0.0177527343108
msdev_ita 0.0109019463377
Fagrossi67 0.0106376988422

4.4 Communities and Girvan—Newman algorithm

The concept of communities is not in itself extremely precise, and also therefore meth-
ods for determining them in networks are many and refer to slightly different objects.
Actually, we can have communities of people corresponding to connected subgraphs
of the graph (similar to cliques). On the other hand we can define communities by
means of vertices with similar properties (i.e. sharing similar links). In this latter case
a community can be determined by a set of vertices which may be totally discon-
nected. Loosely speaking, when dealing with a large graph we would be interested in
a series of vertices and edges that are all somewhat “similar”. That is to say we would
like to be able to determine some “thematic” subgraphs out of the original (larger)
one. Unfortunately, there are various ways of obtaining such a partition of the graph,
and a priori we cannot ensure that one is better than the others, so it is impossible
to tell which method must be used to determine network communities. Imagine the
situation of a bipartite graph (i.e. authors on one side and papers on the others).
By construction, in such a structure the authors do not have any shared edge, and a
community is rather defined by the papers that they are connected to. On the other
hand we can transform this graph to an author-author graph where the links connect
the persons writing a paper together. In this case the same community is determined
by considering which vertices are more closely connected with each other, so that the
common edges play a crucial role.

In the following we shall mostly stick to the latest definition of community; showing
methods and techniques to determine which subgraphs are composed of vertices which

Communities and Girvan—Newman algorithm 83

Number of removals

E-F E-l, B-D, A-D, C-F, C-L, D-H, G-L, D-l, B-E, A-B, H-|, F-L, C-G.

Fig. 4.5 (left) A toy graph to which we applied the GN algorithm. First we compute the
edge betweenness and then we cut the edge with the largest value (dashed). Recursively, we
compute and again delete all the edges one after another. Whenever the removal of one edge
splits the graph, we indicate (right) the edge in bold (i.e. edges E-F, A-D, G-L, D-I, B-E,
A-B, H-1, F-L, C-G). As a result we obtain the dendrogram on the right.

are closely connected with each other with a strength or density of links larger than
the average.

If this is the case in a connected graph, it turns out that communities are denser
subgraphs connected by a few links that act as a bridge between them. By cutting out
these bridges communities emerge as isolated subgraphs. This is the main idea behind
the divisive method of Girvan and Newman (Girvan and Newman, 2002).

4.4.1 Girvan—Newman (GN) algorithm

This method of computing communities, is based on a recursive deletion of edges (Gir-
van and Newman, 2002; Newman and Girvan, 2004). These edges are not randomly
chosen, rather, they are selected for their bridging properties, that is to say they are
selected if they connect dense regions and therefore after their removal these dense
regions appear as the communities within the system. The quantity chosen for this
procedure is the edge betweenness (see Section 3.3). Based on this measure of central-
ity, one computes the betweenness on all the edges of the graph. We start removing
the edge with the largest value then we recompute the edge betweenness and then we
delete the one with the largest betweenness among those left. The process is repeated
until all the edges are removed. Somewhere during this procedure the structure of com-
munities emerges, however, at different stages we have different sets of communities
that vary in both the number of clusters and their size. An example of the procedure
is sketched out in Fig. 4.5.

We use a simple toy graph to work out the procedure. We compute the edge
betweenness of all the links in the graph. Then we start removing the largest one.
Whenever the graph splits into two parts, we keep track of it in the dendrogram.
Often, especially at the end of the process, many edges have the same (largest) value

84 World Wide Web, Wikipedia, and Social Networks

of betweeness; in this case we select on of them randomly. This recursive procedure
finishes when all the vertices are disconnected. The main problem associated with
this way of computing communities, is knowing when to stop the process before we
split the network into isolated vertices. Various implementations have been made of
this method. For example for large graphs one can compute the betweenness, not by
considering all the couples vertices, but just a random selection of the vertices (Tyler
et al., 2003). This results in an effective gain in the speed of the algorithm, paying the
price of reduced precision.

Code for the GN algorithm

G=nx.Graph()

G.add_edges_from([(’A’,’B’),(’A’,’D?),(’B’,’D’),(’B’,’E’),(CE’,’I’),\
()DJ’JI)),()D7,)H)),()H),JIJ)’(JE),7F))’()F7’)C)),\
(’F’,’L’),(’C’,’L’),(’C’,’G’),(’G’,’L’)])

pos=nx.graphviz_layout (G,prog=’neato’)
nx.draw(G, pos,with_labels=True)

#NOTE: THE ORDER OF EDGES IS DIFFERENT FOR THE FACT THAT MANY
#0F THEM HAVE THE SAME BETWEENNESS VALUE...

sorted_bc=[1]

actual_number_components=1

while not sorted_bc==[]:
d_edge=nx.edge_betweenness_centrality(G)
sorted_bc = sorted(d_edge.items(), key=operator.itemgetter(1))
e=sorted_bc.pop()
print "deleting edge:", e[0],
G.remove_edge (xe[0])
num_comp=nx.number_connected_components (G)
print "...we have now ",num_comp," components"
if num_comp>actual_number_components:

actual_number_components=num_comp

#0UTPUT

deleting edge: (’E’, ’F’) ...we have now 2 components
deleting edge: (’°B’, ’E’) ...we have now 2 components
deleting edge: (’D’, ’I’) ...we have now 2 components
deleting edge: (°D’, ’H’) ...we have now 3 components
deleting edge: (°I’, ’H’) ...we have now 4 components
deleting edge: (’F’, ’L’) ...we have now 4 components
deleting edge: (°C’, ’F’) ...we have now 5 components

Modularity 85

deleting edge: (’°B’, ’D’) ...we have now 5 components
deleting edge: (’A’, ’B’) ...we have now 6 components
deleting edge: (’G’, ’L’) ...we have now 6 components
deleting edge: (°C’, ’G’) ...we have now 7 components
deleting edge: (’A’, °D’) ...we have now 8 components
deleting edge: (’C’, ’L’) ...we have now 9 components
deleting edge: (’E’, ’I’) ...we have now 10 components

4.5 Modularity

The whole idea behind the GN algorithm is that the communities are the set of sub-
graphs that have a link density larger than “expected” (for a random graph of the same
size and measure). By cutting bridging edges we isolate such communities and we are
able to determine them quantitatively. Since this process does not tell us when one
division is better than another, we need a quantity for assessing how good the division
is and therefore when we should stop. This quantity is called modularity (Newman,
2006) and it assigns a score to any division in clusters one obtains from a given graph.
The steps we need to take in order to define this quantity are as follows:

e the starting point is to consider a partition of the graph into g subgraphs;
e if the partition is good most of the edges will be inside the subgraphs and few
will connect them;
e we then define a g x g matrix E whose entries e;; give the fraction of edges that
in the original graph connect subgraph ¢ to subgraph j;
e the actual fraction of edges in subgraph 7 is given by element e;;;
e the quantity f; = > =14 €ij 8ives the probability that an end-vertex of a ran-
domly extracted edge is in subgraph i (i € 1,..., g);
e in the absence of correlations the probability that an edge belongs to subgraph i
is f2.
We can now define the modularity @) of a given partition by considering the actual
distribution of edges in the partition, with respect to the one we have for a random
case, i.e.

g
Q= Zeii - 7, (4.7)
i=1

which represents a measure of the validity of a certain partition of the graph. In the
limit case where we have a random series of communities, the edges can be with the
same probability in the same subgraph 7 or between two different subgraphs i, 7. In
this case e;; = f? and Q = 0. If the division into subgraphs is appropriate, then the
actual fraction of internal edges e;; is larger than the estimate f?, and the modularity
is larger than zero. Surprisingly, random graphs (which, as we shall see, are graphs
obtained by randomly drawing edges between vertices) can present partitions with
large modularity (Guimera et al., 2004). In random networks of finite size it is possible

86 World Wide Web, Wikipedia, and Social Networks

to find a partition which not only has a nonzero value of modularity, but even quite
high values. For example, a network of 128 nodes and 1024 edges has a maximum
modularity of 0.208. While on average we expect a null modularity for a random
graph, this does not exclude that by careful choice we can obtain a different result
This suggests that those networks that seem to have no structure actually exhibit
community structure due to fluctuations.

Community detection with the Karate Club network (See Fig. 4.6)

import community
G=nx.read_edgelist("./data/karate.dat")

#first compute the best partition
partition = community.best_partition(G)

#plot the network
size = float(len(set(partition.values())))
pos = nx.spring_layout(G)
count = O.
plt.axis(’off’)
for com in set(partition.values())
count = count + 1.
list_nodes = [nodes for nodes in partition.keys() \
if partition[nodes] == com]
nx.draw_networkx_nodes(G, pos, list_nodes, node_size = 300, \
node_color = str(count / size))
nx.draw_networkx_labels(G,pos)

nx.draw_networkx_edges(G,pos, alpha=0.5,width=1)
savefig(’./data/karate_community.png’,dpi=600)

We can perform the same analysis on the Sardinian Wikipedia with the aim of
extracting the relevant communities. The first thing to do is to load the network and
define the dictionary that associates the Wikipedia node_ids with the page titles.

Community detection for the scwiki web graph

#load the directed and undirected version og the scwiki graph
scwiki_pagelinks_net_dir=nx.read_edgelist \
("./data/scwiki_edgelist.dat",create_using=nx.DiGraph())
scwiki_pagelinks_net=nx.read_edgelist("./data/scwiki_edgelist.dat")

Modularity 87

Fig. 4.6 The Karate Club social network after optimisation of the modularity function.

#load the page titles
diz_titles={}
file_titles=open("./data/scwiki_page_titles.dat",’r’)
while True:

next_line=file_titles.readline()

if not next_line:

break
print next_line.split() [0],next_line.split() [1]
diz_titles[next_line.split() [0]]=next_line.split() [1]

file_titles.close()
#0OUTPUT

4311 Lod

7157 Logos_Bascios
13786 Logroo

8490 Logudoresu
4548 Logudoro

4825 Logusantu
4900 Loiri-Poltu_Santu_Paolu

88 World Wide Web, Wikipedia, and Social Networks

The problem in plotting this network is that it comprises almost 10,000 nodes.
To overcome this problem we generate a representative network in which each node
is a community (we consider just the first nine with more than 200 nodes), with size
proportional to the number of nodes in the corresponding community and edge weight
proportional to the number of edges between each pair of communities (we cut the link
below the threshold weight 100). The representative node is chosen according to the
Pagerank inside the corresponding community. So as a first step we generate the rep-
resentative nodes and print the association with the page title of the scwiki Wikipedia
page and the edges with the appropriate weights. The output will be the community
id, the number of nodes in it, the page title, and the corresponding PageRank.

Generate and optimise the representative network of the community
structure

#optimization
partition = community.best_partition(scwiki_pagelinks_net)

#Generate representative nodes of the community structure

community_structure=nx.Graph()

diz_communities={}

diz_node_labels={}

diz_node_sizes={}

max_node_size=0

for com in set(partition.values())

diz_communities[com] = [nodes for nodes in partition.keys() \
if partition[nodes] == com]
if len(diz_communities[com])>=200:
if max_node_size<len(diz_communities[com]):
max_node_size=len(diz_communities[com])
print "community",com,len(diz_communities[com]),
sub_scwiki_dir = scwiki_pagelinks_net_dir.subgraph \
(diz_communities[com])
res_pr=nx.pagerank(sub_scwiki_dir,max_iter=10000)
sorted_pr=sorted(res_pr.items(), key=operator.itemgetter \
(1) ,reverse=True)

print diz_titles[sorted_pr[0] [0]],sorted_pr[0] [1]
community_structure.add_node (com)
diz_node_labels[com]=diz_titles[sorted_pr [0] [0]]
diz_node_sizes[com]=len(diz_communities[com])

#Generate edge weights according to the number of links
#among communities

max_edge_weight=0.0

for i1 in range(community_structure.number_of_nodes()-1):

Modularity 89

for i2 in range(il+l,community_structure.number_of_nodes()):
wweight=0.0
for nl in diz_communities[community_structure.nodes() [i1]]:
for n2 in diz_communities[community_structure.nodes() \
[i2]1]:
if scwiki_pagelinks_net.has_edge(nl,n2):
wweight=wweight+1.0
if wweight>100.0:
if max_edge_weight<wweight:
max_edge_weight=wweight
community_structure.add_edge (community_structure. \
nodes () [i1],community_structure.nodes() [i2], \
weight=wweight)

#0UTPUT

community 0 2012 Logudoresu 0.0507648029074

community 1 1812 Wikipedia 0.0498390890911

community 2 861 Classificatzione_sientfica 0.0358451735252
community 3 795 Babel 0.0296037336974

community 4 662 Sardigna 0.0403623149927

community 5 393 Nugoresu 0.0781774191072

community 6 1939 Limba_Sarda_Comuna 0.0219626233778
community 8 201 Rabascius 0.053309971387

community 22 223 Casteddu 0.0197102893607

The final plot will reveal the hierarchy of the community structure, the relative
sizes of nodes/communities and edges (see Fig. 4.7). This result shows that the most
important nodes in the communities are related to territorial locations and language
classifications, topics that are known to be relevant to the Sardinian culture.

Plotting the representative network of the community structure

pos=nx.graphviz_layout (community_structure,prog=’circo’)
node_size_factor=2000.0
edge_weight_factor=10.0

plt.axis(’off’)

for n in community_structure.nodes():
nx.draw_networkx_nodes(community_structure, pos, [n], node_size\
= node_size_factor*diz_node_sizes[n]/ \
max_node_size, node_color=’Black’)

90 World Wide Web, Wikipedia, and Social Networks

Fig. 4.7 Network representation of the community structure of the Sardinian Wikipedia
scwiki. We selected the main communities (the first nine, with more than 200 nodes) the size
of each node being proportional to the number of nodes in each community. The edge width
is instead proportional to the number of edges between each pair of communities.

nx.draw_networkx_labels(community_structure,pos, font_color= \
’White’ ,axis=’off’)

for e in community_structure.edges():
nx.draw_networkx_edges (community_structure,pos, [e] ,alpha=0.5, \
width=edge_weight_factor* \
community_structurel[e[0]] [e[1]] [’weight’]\
/max_edge_weight)

