
Factorization Machines
DSTA

1 Factorization Machines

1.1 Genesis

Invented by Steffen Rendle, now Google Research:

• 2010 IEEE International Conference on Data Mining

• ACM Transactions on Intelligent Systems and Technology (TIST) 3 (3), 57

1.2 Problem statement

Instance:

• a collection (dataset) D of m numerical datapoints (points in Rn)

• a classification system C = {c1, c2, . . . ck}

. . .

Solution: classification function γ : X → C

Measure: misclassification

. . .

[PF] “classification predicts whether something will happen, whereas regr. predicts how
much something will happen.”

1

https://scholar.google.com/citations?user=yR-ugIoAAAAJ
https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf
https://dl.acm.org/citation.cfm?id=2168771

1.3 Supervised version

. . .

Estimate the rating for the new user/film combination x8: most cells are 0, y8 is unknown.

. . .

We face sparsity.

D = {(x(1), y(1)), (x(2), y(2)), . . . }

Find rating estimate function Y : Rn → T s.t.

. . .

• T = R for regression,

• T = {+, −} for classification.

D̂ = {(x(m+1), Y (y(m+1)), (x(m+2), Y (y(m+2)), . . . }

Note: Rendle uses different letters; here n=dimensions(D))

1.4 For reference: the constraints scenario

D = {x(a), x(b) . . . }

re-arrange the rows so that x(a) maps higher than x(b) and so on.

Ideal for Top-k searchs and recommendations

2

2 The Model

2.1 Intuition

extend linear regression to capture synergetic effects between variables:

introduce a minimal quadratic effect xixj

fill the table by looking at values on the same row or column of the target cell

2.2 General estimation

ŷ(x) := w0 +
n∑

i=1
wixi

an initial (fixed) bias + linear regression.

To look at quadratic interactions, fix d = 2 :

ŷ(x) := w0 +
n∑

i=1
wixi +

n∑
i=1

n∑
j=i+1

wijxixj

. . .

• lots of training to find out all n2 coefficients wij

• the wij ’s may not even be significant (too close to 0)

• computing even a single prediction costs Θ(n2)

3 A simpler model

3.1 In practice

1. fix d=2 and a small integer k (e.g., # of genres)

2. build a model of how the n dimensions relate to the k genres: a Vn×k matrix

. . .

W = V · V T ⇒ wij = vT
i · vj =< vi, vj >

Key point: W contains n2

2 − n
2 estimates while the equivaleny V only has n · k (latent)

estimates.

3

ŷ(x) := w0 +
n∑

i=1
wixi +

n∑
i=1

n∑
j=i+1

< vi, vj > xixj

Where the inner/dot product is

< vi, vj >= vT
i · vj =

k∑
f=1

vif vjf

3.2 [Rendle, 2010]

ŵi,j :=< vi, vj > models the interaction between the i-th and j-th variable.

Instead of using an own model parameter wi,j ∈ R for each interaction, the FM models the
interaction by factorizing it.

We will see later on, that this is the key point which allows high quality parameter estimates
of higher-order interactions (d ≥ 2) under sparsity.

4 Computational costs

4.1 Th: cost is linear in n

ŷ(x) := w0 +
n∑

i=1
wixi +

n∑
i=1

n∑
j=i+1

< vi, vj > xixj

where

< vi, vj >= vT
i · vj =

k∑
f=1

vif vjf

4

How can this be computed in Θ(kn) = Θ(n) iteration?

n∑
i=1

n∑
j=i+1

< vi, vj > xixj

. . .

Insight: i and j never appear together: their iteration can be separated.

. . .

Idea: iterate over k outside, push i and j iterations inside.

5 Implementations

5.1 The LibFM source

libfm.org is the repository for the ‘official’ C++ implementation of FMs, which ended in
2014.

5.2 FMs in Python

PyFM

provides a new environment for running FMs within Python.

pip install git+https://github.com/coreylynch/pyFM

. . .

Build and train a Factorization Machine
myfm = pylibfm.FM(num_factors=10,

num_iter=100,
task="regression",
...)

myfm.fit(X_train,y_train)
...

5.3 1-Hot econding

5

http://libfm.org/
https://pythonawesome.com/factorization-machines-in-python/

from pyfm import pylibfm
from sklearn.feature_extraction import DictVectorizer
import numpy as np

train = [
{"user": "1", "item": "5", "age": 19},
{"user": "2", "item": "43", "age": 33},
...

]

four users, four items: 8 columns

. . .

v = DictVectorizer()
X = v.fit_transform(train)
print(X.toarray())
[[19. 0. 0. 0. 1. 1. 0. 0. 0.]
[33. 0. 0. 1. 0. 0. 1. 0. 0.]
...

]

What is the estimated appreciation of user 1, aged 24 now, for item 10 once he or she buys
it?

y = np.repeat(1.0, X.shape[0])

fm = pylibfm.FM()

fm.fit(X, y)

fm.predict(v.transform({"user": "1", "item": "10", "age": 24}))

6 Coda: The time-efficency of MF

6.1 Computational aspects

Rendle proved that an intrisically quadratic activity: compute all possible second-order,
xi · xj , effects, can be done in a time linear and not quadratic in n.

ŷ(x) = w0 +
∑n

i=1 wixi +
∑n

i=1
∑n

j=i+1 wijxixj

6

To do so, Rendle models feature interactions by learning k latent factors:

⟨vi, vj⟩ =
∑k

f=1 vi,f vj,f

6.2 Optimisation

While computing the mathematical formula for polynomial regression takes Θ(n2) ops.,
Rendle does it in Θ(kn).

Notice how summing over different pairs is equivalent to summing over all pairs minus the
self-interactions (divided by 2):

a correction factor 1
2 is introduced from the beginning of the derivation.∑n

i=1
∑n

j=i+1⟨vi, vj⟩xixj

. . .

= 1
2

∑n
i=1

∑n
j=1⟨vi, vj⟩xixj − 1

2
∑n

i=1⟨vi, vi⟩xixi

6.3 Steps
∑n

i=1
∑n

j=i+1⟨vi, vj⟩xixj

= 1
2

∑n
i=1

∑n
j=1⟨vi, vj⟩xixj − 1

2
∑n

i=1⟨vi, vi⟩xixi

. . .

= 1
2

(∑n
i=1

∑n
j=1

∑k
f=1 vi,f vj,f xixj

)
− 1

2

(∑n
i=1

∑k
f=1 vi,f vi,f xixi

)
. . .

= 1
2

(∑n
i=1

∑n
j=1

∑k
f=1 vi,f vj,f xixj −

∑n
i=1

∑k
f=1 vi,f vi,f xixi

)

= 1
2

(∑n
i=1

∑n
j=1

∑k
f=1 vi,f vj,f xixj −

∑n
i=1

∑k
f=1 vi,f vi,f xixi

)
. . .

= 1
2

∑k
f=1

(
(
∑n

i=1 vi,f xi)
(∑n

j=1 vj,f xj

)
−

∑n
i=1 v2

i,f x2
i

)
. . .

= 1
2

∑k
f=1

(
(
∑n

i vi,f xi)2 −
∑n

i=1 v2
i,f x2

i

)
Now the summations in i are inside the k summation but separated from each other.

. . .

7

Substituting back into the factorization machine formula:

ŷ(x) = w0 +
∑n

i=1 wixi + 1
2

∑k
f=1

(
(
∑n

i vi,f xi)2 −
∑n

i=1 v2
i,f x2

i

)

8

	Factorization Machines
	Genesis
	Problem statement
	Supervised version
	For reference: the constraints scenario

	The Model
	Intuition
	General estimation

	A simpler model
	In practice
	[Rendle, 2010]

	Computational costs
	Th: cost is linear in n

	Implementations
	The LibFM source
	FMs in Python
	1-Hot econding

	Coda: The time-efficency of MF
	Computational aspects
	Optimisation
	Steps

