
Non-negative Matrix factorization
DSTA

1 Review of Spectral Analysis/SVD

Decompose the data matrix and interpret its ‘first’ eigenvalues as concepts/topics for user
and activity classification:

M = UΣV T

. . .

U(m×r) is column-orthonormal: ui · uT
j = 0

V T
(r×n) is row-orthonormal: vT

i · vj = 0

Σ(r×r) is diagonal, σij are the singular values

dimension r will depend on the no. of singular values found

1

1.1 Hurdle: interpretation of negative values

With negative values we cannot distinguish between i) lack of information, ii) lack of interest
or ii) outright repulsion.

A non-negative decomposition of the activity matrix would be interpretable:

A(n×d) = P(n×r) · Q(r×d)

• A: activity

• P : user participation to a topic

• Q: quantity of the topic in product

. . .

user/product profiling and reccommender sys. would be half-done already!

2

2 Non-negative decomposition

2.1 The numerical problem

Istance: a non-negative matrix V

Solution: non-negative matrix factors W and H s.t.

V ≈ W · H

with wij , hrs ≥ 0

2.2 Notation

A = B · C

Let ai be the i-th column of A. It can be expressed as

. . .

ai = B · ci

each col. of the result is seen as a linear combination of the cols. of B, with ci supplying the
weights:

. . .

ai = B · ci = c1,ib1 + c2,ib2 + · · · + cn,ibn

2.3 Interpretation

Let vi be the i-th column of V.

If V is an activity m., vi represent the consumption of i

. . .

vi ≈ W · hi

Consumption of i is given by a linear combination of the cols. of W, with hi supplying the
weights.

Each wi is interpretable as a pattern (or mask)

3

[Lee & Seung, Nature, 1999]: “Learning the parts of objects by non-negative matrix factor-
ization.”

vi ≈ w1 · h1,i + . . . wr · h1,r

W can be regarded as containing a basis that is optimized for the linear approxi-
mation of the data in V.

. . .

Since relatively few basis vectors are used to represent many data vectors, good
approximation can only be achieved if the basis vectors discover structure that is
latent in the data.

2.4 Norm notation

Frobenius’ element-wise norm: ||Am×n||F =
√∑m

i=1
∑n

j=1 a2
ij =

√∑
i,j a2

ij

. . .

Notation for error:

||X − Y ||2F = ||X − Y ||2 = ∑
i,j(xij − yij)2

3 NMF as error-minimization

3.1 Computational problem

Input: Vn×m

Minimize ||V − WH||2

subject to W, H ≥ 0.

. . .

• choose the new dimension r s.t. (n + m)r < nm;

• calculate Wn×r and Hr×m.

4

http://www.nature.com/nature/journal/v401/n6755/abs/401788a0.html

3.2 Information-theoretic view

If the input matrix can be (somehow) normalised then we see the search for the perfect
non-negative decomposition in terms of minimizing divergence:

DI(X||Y) = Σi,j(xij · log(xij

yij
) − xij + yij))

. . .

Minimize DI(V ||WH)

subject to W, H ≥ 0.

Recommended version for sparse counting data.

The Kullback-Leibler divergence, DKL, may also be used.

3.3 Gradient descent KO

Although [error func.] are convex in W only or H only, they are not convex in
both variables together.

Therefore it is unrealistic to expect an algorithm to solve [the problem] in the
sense of finding global minima.

However, there are many techniques from numerical optimization for finding
local minima.

Gradient descent is perhaps the simplest technique to implement, but convergence
can be slow.

4 Lee-Seung’s Method

4.1 Iterated error balancing

1. start from random W and H

2. compute the error

3. update W and H with the multiplicative update rule:

5

4.2 Multiplicative update

Classical Gradient descent: we move around by adding/subtracting some quantity

NMF: we move around by multiplying by a local error measure
viµ

(wh)iµ

. . .

• through iteration, the viµ

(wh)iµ
factors vanish and we stop.

6

• the update rules maintain non-negativity and force wi to sum to 1.

5 Interpretability of NMF

5.1 The 19x19 mugshots

5.2

A probabilistic hidden-variables model:

Cols. of W are bases that are combined to form the rec.

The influence of ha on vi is represented by a connection of strength wia

7

5.3 W and H in a 7x7 montage

The eigenfaces might have negative values

5.4 The faces on Scikit-learn

Check a visual comparison of the methods on 64x64=4096 mugshots: 40 classes for 400
samples.

8

https://scikit-learn.org/stable/auto_examples/decomposition/plot_faces_decomposition.html

from sklearn.datasets import fetch_olivetti_faces

olivetti_faces = fetch_olivetti_faces()

olivetti_faces.images.shape

(400, 64, 64)

...
from sklearn import decomposition

from numpy.random import RandomState

faces, _ = fetch_olivetti_faces()

nmf_estimator = decomposition.NMF(solver='mu')

nmf_estimator.fit(faces)

9

6 Activity-matrix decomposition

6.1 A simple ratings matrix

N=7, M=5.

Fix K=2 and run NMF:

@INPUT:
R: a m. to be factorized, dim. N x M
P: an initial m. of dim. N x K
Q: an initial m. of dim. M x K
K: the no. of latent features

10

steps: the max no. of steps to perform the optimisation
alpha: the learning rate
beta: the regularization parameter

@OUTPUT:
the final matrices P and Q

6.2 Direct implementation (1 run)

nP=
[[0.33104196 0.39332058]
[1.08079793 1.08397306]
[1.59267325 1.27929568]
[1.87852789 1.72209575]
[0.67146598 1.76523621]
[1.04872774 2.10824903]
[0.94419145 0.59698619]]

nQ.T=
[[1.27381876 1.3870236 1.67315614 0.9855609 0.81578369]
[1.50953822 1.38352352 1.06501557 1.87281749 1.96189735]]

6.3 Analysis of the error, I

np.dot(nP, nQ.T) = [
[1.01541991 1.00333129 0.97277743 1.06287968 1.04171324]
[3.01303945 2.99879446 2.96279189 3.09527589 3.0083412]
[3.95992279 3.97901104 4.02726085 3.9655638 3.80912366]
[4.99247343 4.98812249 4.97712927 5.07657468 4.91104751]
[3.52001748 3.37358497 3.00347147 3.96773585 4.01098322]
[4.51837154 4.37142223 4.00000329 4.98195069 4.99170315]
[2.10390225 2.13556026 2.21557931 2.04860435 1.94148161]
]

ratings = [[1, 1, 1, 0, 0],
[3, 3, 3, 0, 0],
[4, 4, 4, 0, 0],
[5, 5, 5, 0, 0],
[0, 0, 0, 4, 4],
[0, 0, 0, 5, 5],
[0, 0, 0, 2, 2]

]

11

6.4 Analysis of the error, II

np.rint(np.dot(nP, nQ.T))= [
[1. 1. 1. 1. 1.]

[3. 3. 3. 3. 3.]
[4. 4. 4. 4. 4.]
[5. 5. 5. 5. 5.]
[4. 4. 4. 4. 4.]
[5. 5. 5. 5. 5.]
[2. 2. 2. 2. 2.]

]

ratings = [[1, 1, 1, 0, 0],
[3, 3, 3, 0, 0],
[4, 4, 4, 0, 0],
[5, 5, 5, 0, 0],
[0, 0, 0, 4, 4],
[0, 0, 0, 5, 5],
[0, 0, 0, 2, 2]]

try Scikit-learn on the same instance (right-click to save a local copy).

6.5 Analysis of the result

W(user x topic) = [
[0. 0.82037571]
[0. 2.46112713]
[0. 3.28150284]
[0. 4.10187855]
[1.62445593 0.]
[2.03056992 0.]
[0.81222797 0.]
]

H(topic x film) =
[[0. 0. 0. 2.46236289 2.46236289]
[1.21895369 1.21895369 1.21895369 0. 0.]]

. . .

W: users’ committment to a topic.

H: films’ pertinence to a specific topic (binary, why?)

12

http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.NMF.html
./src/scikit-learn-nmf.ipynb

	Review of Spectral Analysis/SVD
	Hurdle: interpretation of negative values

	Non-negative decomposition
	The numerical problem
	Notation
	Interpretation
	Norm notation

	NMF as error-minimization
	Computational problem
	Information-theoretic view
	Gradient descent KO

	Lee-Seung's Method
	Iterated error balancing
	Multiplicative update

	Interpretability of NMF
	The 19x19 mugshots
	
	W and H in a 7x7 montage
	The faces on Scikit-learn

	Activity-matrix decomposition
	A simple ratings matrix
	Direct implementation (1 run)
	Analysis of the error, I
	Analysis of the error, II
	Analysis of the result

