Trade Networks

DSTA

1 Ch. 2: Trade networks

1.1 Important concepts

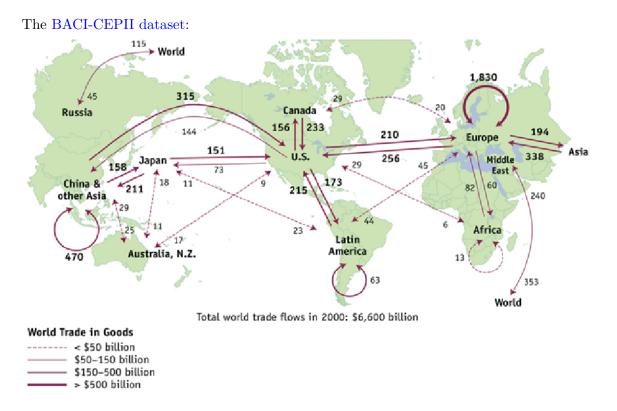
- directed networks
- weighted networks
- sorts, and their quantitites
- time

. . .

discover multiplex networks \mathbf{M}

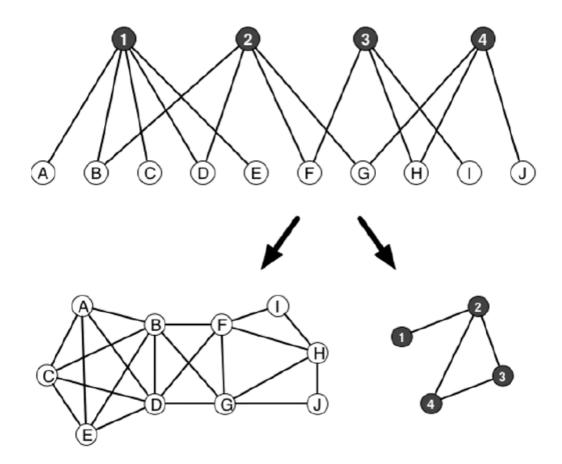
1.2 Towards Clustering

- reciprocity
- assorativity


. . .

• discover hidden structures

1.3 The directed network model


Theme: discover non-trivial relationships among countries look at how they trade and what they trade

1.4 Weighted networks

1.5 Bipartite networks

The country-to-product network induces country-to-country and product-to-product relationships.

1.6 Reconstruction

$$C = M_{cp} \cdot M_{cp}^{T}$$
$$P = M_{cp}^{T} \cdot M_{cp}$$

1.7 Analysis of neighbours

For a node i, let k_i be its degree. For directed networks: $k_i = k_i^{in} + k_i^{out}$. The distribution of degree P(k) provides a signature of the network. The average degree is denoted $\langle k \rangle$.

1.8 Reciprocity

For a given directed network, reciprocity is the probability that of having links in both directions between two vertices.

R measures how the economies of two countries become interconnected (or interdependent).

$$r = \frac{L^{\leftrightarrow}}{L}$$

 $L^{\leftrightarrow}:$ number of reciprocal links

L: total number of links.

1.9 Assortativity

Do vertices tend to connect with those with similar/dissimilar degree? Compute . . .

• the avg. degree of node *i*'s neighbors:

$$K_{nn}(i) = \frac{\sum_{\langle ij \rangle} k_j}{k_i}$$

. . .

• Next, the avg. K_{nn} for the n_d nodes which have degree d

$$K_{nn}(d) = \frac{\sum_{i:k_i=d} K_{nn}(i)}{n_d}$$

$$K_{nn}(d) = \frac{\sum_{i:k_i=d} K_{nn}(i)}{n_d}$$

Are d and $K_{nn}(d)$ close?

Does assortativity grow over time?

1.10 Balassa's RCA

The export matrix M is an adjacency matrix which represes a bipartite graph. Each scalar value M_{cp} corresponds to the aggregated export of product p by country c. We can compute fractional ownership of export, product by product. Many countries export coffee, so none really controls it.

Italy exports 100% of Bergamot oil (cfr. Prince of Wales tea).

The Revealed Comparative Advantage (RCA) is in controlling a high fraction of some product.

 $\sum_{p'} M_{cp'}$: total value of export by country c.

$$\operatorname{RCA}_{cp} = \frac{\frac{M_{cp}}{\sum_{p'} M_{cp'}}}{\frac{\sum_{c'} M_{c'p}}{\sum_{c'} \sum_{p'} M_{c'p'}}}$$