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11.1.4 The Matrix of Eigenvectors

Suppose we have an n × n symmetric matrix M whose eigenvectors, viewed
as column vectors, are e1, e2, . . . , en. Let E be the matrix whose ith column
is ei. Then EET = ETE = I. The explanation is that the eigenvectors of a
symmetric matrix are orthonormal. That is, they are orthogonal unit vectors.

Example 11.5 : For the matrix M of Example 11.2, the matrix E is

[
2/
√
5 1/

√
5

−1/√5 2/
√
5

]

ET is therefore [
2/
√
5 −1/√5

1/
√
5 2/

√
5

]

When we compute EET we get

[
4/5 + 1/5 −2/5 + 2/5
−2/5 + 2/5 1/5 + 4/5

]
=

[
1 0
0 1

]

The calculation is similar when we compute ETE. Notice that the 1’s along
the main diagonal are the sums of the squares of the components of each of the
eigenvectors, which makes sense because they are unit vectors. The 0’s off the
diagonal reflect the fact that the entry in the ith row and jth column is the
dot product of the ith and jth eigenvectors. Since eigenvectors are orthogonal,
these dot products are 0. �

11.1.5 Exercises for Section 11.1

Exercise 11.1.1 : Find the unit vector in the same direction as the vector
[1, 2, 3].

Exercise 11.1.2 : Complete Example 11.4 by computing the principal eigen-
vector of the matrix that was constructed in this example. How close to the
correct solution (from Example 11.2) are you?

Exercise 11.1.3 : For any symmetric 3× 3 matrix

⎡
⎣ a− λ b c

b d− λ e
c e f − λ

⎤
⎦

there is a cubic equation in λ that says the determinant of this matrix is 0. In
terms of a through f , find this equation.
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Exercise 11.1.4 : Find the eigenpairs for the following matrix:

⎡
⎣ 1 1 1

1 2 3
1 3 5

⎤
⎦

using the method of Section 11.1.2.

! Exercise 11.1.5 : Find the eigenpairs for the following matrix:

⎡
⎣ 1 1 1

1 2 3
1 3 6

⎤
⎦

using the method of Section 11.1.2.

Exercise 11.1.6 : For the matrix of Exercise 11.1.4:

(a) Starting with a vector of three 1’s, use power iteration to find an approx-
imate value of the principal eigenvector.

(b) Compute an estimate the principal eigenvalue for the matrix.

(c) Construct a new matrix by subtracting out the effect of the principal
eigenpair, as in Section 11.1.3.

(d) From your matrix of (c), find the second eigenpair for the original matrix
of Exercise 11.1.4.

(e) Repeat (c) and (d) to find the third eigenpair for the original matrix.

Exercise 11.1.7 : Repeat Exercise 11.1.6 for the matrix of Exercise 11.1.5.

11.2 Principal-Component Analysis

Principal-component analysis, or PCA, is a technique for taking a dataset con-
sisting of a set of tuples representing points in a high-dimensional space and
finding the directions along which the tuples line up best. The idea is to treat
the set of tuples as a matrix M and find the eigenvectors for MMT or MTM .
The matrix of these eigenvectors can be thought of as a rigid rotation in a high-
dimensional space. When you apply this transformation to the original data,
the axis corresponding to the principal eigenvector is the one along which the
points are most “spread out,” More precisely, this axis is the one along which
the variance of the data is maximized. Put another way, the points can best be
viewed as lying along this axis, with small deviations from this axis. Likewise,
the axis corresponding to the second eigenvector (the eigenvector correspond-
ing to the second-largest eigenvalue) is the axis along which the variance of
distances from the first axis is greatest, and so on.
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We can view PCA as a data-mining technique. The high-dimensional data
can be replaced by its projection onto the most important axes. These axes
are the ones corresponding to the largest eigenvalues. Thus, the original data
is approximated by data that has many fewer dimensions and that summarizes
well the original data.

11.2.1 An Illustrative Example

We shall start the exposition with a contrived and simple example. In this
example, the data is two-dimensional, a number of dimensions that is too small
to make PCA really useful. Moreover, the data, shown in Fig. 11.1 has only
four points, and they are arranged in a simple pattern along the 45-degree line
to make our calculations easy to follow. That is, to anticipate the result, the
points can best be viewed as lying along the axis that is at a 45-degree angle,
with small deviations in the perpendicular direction.

Figure 11.1: Four points in a two-dimensional space

To begin, let us represent the points by a matrix M with four rows – one
for each point – and two columns, corresponding to the x-axis and y-axis. This
matrix is

M =

⎡
⎢⎢⎣

1 2
2 1
3 4
4 3

⎤
⎥⎥⎦

Compute MTM , which is

MTM =

[
1 2 3 4
2 1 4 3

]
⎡
⎢⎢⎣

1 2
2 1
3 4
4 3

⎤
⎥⎥⎦ =

[
30 28
28 30

]

We may find the eigenvalues of the matrix above by solving the equation

(30− λ)(30− λ)− 28× 28 = 0
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as we did in Example 11.2. The solution is λ = 58 and λ = 2.
Following the same procedure as in Example 11.2, we must solve[

30 28
28 30

] [
x
y

]
= 58

[
x
y

]

When we multiply out the matrix and vector we get two equations

30x+28y = 58x
28x+30y = 58y

Both equations tell us the same thing: x = y. Thus, the unit eigenvector
corresponding to the principal eigenvalue 58 is[

1/
√
2

1/
√
2

]

For the second eigenvalue, 2, we perform the same process. Multiply out[
30 28
28 30

] [
x
y

]
= 2

[
x
y

]

to get the two equations

30x+28y = 2x
28x+30y = 2y

Both equations tell us the same thing: x = −y. Thus, the unit eigenvector
corresponding to the principal eigenvalue 2 is[ −1/√2

1/
√
2

]

While we promised to write eigenvectors with their first component positive,
we choose the opposite here because it makes the transformation of coordinates
easier to follow in this case.

Now, let us construct E, the matrix of eigenvectors for the matrix MTM .
Placing the principal eigenvector first, the matrix of eigenvectors is

E =

[
1/
√
2 −1/√2

1/
√
2 1/

√
2

]

Any matrix of orthonormal vectors (unit vectors that are orthogonal to one
another) represents a rotation and/or reflection of the axes of a Euclidean space.
The matrix above can be viewed as a rotation 45 degrees counterclockwise. For
example, let us multiply the matrix M that represents each of the points of
Fig. 11.1 by E. The product is

ME =

⎡
⎢⎢⎣

1 2
2 1
3 4
4 3

⎤
⎥⎥⎦
[

1/
√
2 −1/√2

1/
√
2 1/

√
2

]
=

⎡
⎢⎢⎣

3/
√
2 1/

√
2

3/
√
2 −1/√2

7/
√
2 1/

√
2

7/
√
2 −1/√2

⎤
⎥⎥⎦
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Figure 11.2: Figure 11.1 with the axes rotated 45 degrees counterclockwise

We see the first point, [1, 2], has been transformed into the point

[3/
√
2, 1/

√
2]

If we examine Fig. 11.2, with the dashed line representing the new x-axis, we
see that the projection of the first point onto that axis places it at distance
3/
√
2 from the origin. To check this fact, notice that the point of projection for

both the first and second points is [1.5, 1.5] in the original coordinate system,
and the distance from the origin to this point is√

(1.5)2 + (1.5)2 =
√
9/2 = 3/

√
2

Moreover, the new y-axis is, of course, perpendicular to the dashed line. The
first point is at distance 1/

√
2 above the new x-axis in the direction of the

y-axis. That is, the distance between the points [1, 2] and [1.5, 1.5] is

√
(1 − 1.5)2 + (2− 1.5)2 =

√
(−1/2)2 + (1/2)2 =

√
1/2 = 1/

√
2

Figure 11.3 shows the four points in the rotated coordinate system.

Figure 11.3: The points of Fig. 11.1 in the new coordinate system

The second point, [2, 1] happens by coincidence to project onto the same
point of the new x-axis. It is 1/

√
2 below that axis along the new y-axis, as is
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confirmed by the fact that the second row in the matrix of transformed points
is [3/

√
2,−1/√2]. The third point, [3, 4] is transformed into [7/

√
2, 1/

√
2] and

the fourth point, [4, 3], is transformed to [7/
√
2,−1/√2]. That is, they both

project onto the same point of the new x-axis, and that point is at distance
7/
√
2 from the origin, while they are 1/

√
2 above and below the new x-axis in

the direction of the new y-axis.

11.2.2 Using Eigenvectors for Dimensionality Reduction

From the example we have just worked out, we can see a general principle. If
M is a matrix whose rows each represent a point in a Euclidean space with
any number of dimensions, we can compute MTM and compute its eigenpairs.
Let E be the matrix whose columns are the eigenvectors, ordered as largest
eigenvalue first. Define the matrix L to have the eigenvalues of MTM along
the diagonal, largest first, and 0’s in all other entries. Then, since MTMe =
λe = eλ for each eigenvector e and its corresponding eigenvalue λ, it follows
that MTME = EL.

We observed that ME is the points of M transformed into a new coordi-
nate space. In this space, the first axis (the one corresponding to the largest
eigenvalue) is the most significant; formally, the variance of points along that
axis is the greatest. The second axis, corresponding to the second eigenpair,
is next most significant in the same sense, and the pattern continues for each
of the eigenpairs. If we want to transform M to a space with fewer dimen-
sions, then the choice that preserves the most significance is the one that uses
the eigenvectors associated with the largest eigenvalues and ignores the other
eigenvalues.

That is, let Ek be the first k columns of E. Then MEk is a k-dimensional
representation of M .

Example 11.6 : Let M be the matrix from Section 11.2.1. This data has only
two dimensions, so the only dimensionality reduction we can do is to use k = 1;
i.e., project the data onto a one dimensional space. That is, we compute ME1

by ⎡
⎢⎢⎣

1 2
2 1
3 4
4 3

⎤
⎥⎥⎦
[

1/
√
2

1/
√
2

]
=

⎡
⎢⎢⎣

3/
√
2

3/
√
2

7/
√
2

7/
√
2

⎤
⎥⎥⎦

The effect of this transformation is to replace the points of M by their pro-
jections onto the x-axis of Fig. 11.3. While the first two points project to the
same point, as do the third and fourth points, this representation makes the
best possible one-dimensional distinctions among the points. �
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11.2.3 The Matrix of Distances

Let us return to the example of Section 11.2.1, but instead of starting with
MTM , let us examine the eigenvalues of MMT. Since our example M has
more rows than columns, the latter is a bigger matrix than the former, but if
M had more columns than rows, we would actually get a smaller matrix. In
the running example, we have

MMT =

⎡
⎢⎢⎣

1 2
2 1
3 4
4 3

⎤
⎥⎥⎦
[

1 2 3 4
2 1 4 3

]
=

⎡
⎢⎢⎣

5 4 11 10
4 5 10 11
11 10 25 24
10 11 24 25

⎤
⎥⎥⎦

Like MTM , we see that MMT is symmetric. The entry in the ith row and
jth column has a simple interpretation; it is the dot product of the vectors
represented by the ith and jth points (rows of M).

There is a strong relationship between the eigenvalues of MTM and MMT.
Suppose e is an eigenvector of MTM ; that is,

MTMe = λe

Multiply both sides of this equation by M on the left. Then

MMT(Me) = Mλe = λ(Me)

Thus, as long as Me is not the zero vector 0, it will be an eigenvector of MMT

and λ will be an eigenvalue of MMT as well as of MTM .
The converse holds as well. That is, if e is an eigenvector of MMT with

corresponding eigenvalue λ, then start with MMTe = λe and multiply on the
left by MT to conclude that MTM(MTe) = λ(MTe). Thus, if MTe is not 0,
then λ is also an eigenvalue of MTM .

We might wonder what happens when MTe = 0. In that case, MMTe

is also 0, but e is not 0 because 0 cannot be an eigenvector. However, since
0 = λe, we conclude that λ = 0.

We conclude that the eigenvalues of MMT are the eigenvalues of MTM
plus additional 0’s. If the dimension of MMT were less than the dimension
of MTM , then the opposite would be true; the eigenvalues of MTM would be
those of MMT plus additional 0’s.

⎡
⎢⎢⎣

3/
√
116 1/2 7/

√
116 1/2

3/
√
116 −1/2 7/

√
116 −1/2

7/
√
116 1/2 −3/√116 −1/2

7/
√
116 −1/2 −3/√116 1/2

⎤
⎥⎥⎦

Figure 11.4: Eigenvector matrix for MMT
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Example 11.7 : The eigenvalues of MMT for our running example must in-
clude 58 and 2, because those are the eigenvalues of MTM as we observed in
Section 11.2.1. Since MMT is a 4 × 4 matrix, it has two other eigenvalues,
which must both be 0. The matrix of eigenvectors corresponding to 58, 2, 0,
and 0 is shown in Fig. 11.4. �

11.2.4 Exercises for Section 11.2

Exercise 11.2.1 : Let M be the matrix of data points

⎡
⎢⎢⎣

1 1
2 4
3 9
4 16

⎤
⎥⎥⎦

(a) What are MTM and MMT?

(b) Compute the eigenpairs for MTM .

! (c) What do you expect to be the eigenvalues of MMT?

! (d) Find the eigenvectors of MMT, using your eigenvalues from part (c).

! Exercise 11.2.2 : Prove that if M is any matrix, then MTM and MMT are
symmetric.

11.3 Singular-Value Decomposition

We now take up a second form of matrix analysis that leads to a low-dimensional
representation of a high-dimensional matrix. This approach, called singular-

value decomposition (SVD), allows an exact representation of any matrix, and
also makes it easy to eliminate the less important parts of that representation to
produce an approximate representation with any desired number of dimensions.
Of course the fewer the dimensions we choose, the less accurate will be the
approximation.

We begin with the necessary definitions. Then, we explore the idea that the
SVD defines a small number of “concepts” that connect the rows and columns
of the matrix. We show how eliminating the least important concepts gives us a
smaller representation that closely approximates the original matrix. Next, we
see how these concepts can be used to query the original matrix more efficiently,
and finally we offer an algorithm for performing the SVD itself.

11.3.1 Definition of SVD

Let M be an m×n matrix, and let the rank of M be r. Recall that the rank of
a matrix is the largest number of rows (or equivalently columns) we can choose



11.3. SINGULAR-VALUE DECOMPOSITION 429

for which no nonzero linear combination of the rows is the all-zero vector 0 (we
say a set of such rows or columns is independent). Then we can find matrices
U , Σ, and V as shown in Fig. 11.5 with the following properties:

1. U is an m× r column-orthonormal matrix ; that is, each of its columns is
a unit vector and the dot product of any two columns is 0.

2. V is an n× r column-orthonormal matrix. Note that we always use V in
its transposed form, so it is the rows of V T that are orthonormal.

3. Σ is a diagonal matrix; that is, all elements not on the main diagonal are
0. The elements of Σ are called the singular values of M .

Mm

n

V T r

U

r

Σ

=

nr

Figure 11.5: The form of a singular-value decomposition

Example 11.8 : Figure 11.6 gives a rank-2 matrix representing ratings of
movies by users. In this contrived example there are two “concepts” underlying
the movies: science-fiction and romance. All the boys rate only science-fiction,
and all the girls rate only romance. It is this existence of two strictly adhered to
concepts that gives the matrix a rank of 2. That is, we may pick one of the first
four rows and one of the last three rows and observe that there is no nonzero
linear sum of these rows that is 0. But we cannot pick three independent rows.
For example, if we pick rows 1, 2, and 7, then three times the first minus the
second, plus zero times the seventh is 0.

We can make a similar observation about the columns. We may pick one
of the first three columns and one of the last two coluns, and they will be
independent, but no set of three columns is independent.

The decomposition of the matrix M from Fig. 11.6 into U , Σ, and V , with
all elements correct to two significant digits, is shown in Fig. 11.7. Since the
rank of M is 2, we can use r = 2 in the decomposition. We shall see how to
compute this decomposition in Section 11.3.6. �
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Figure 11.6: Ratings of movies by users

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0
3 3 3 0 0
4 4 4 0 0
5 5 5 0 0
0 0 0 4 4
0 0 0 5 5
0 0 0 2 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

.14 0

.42 0

.56 0

.70 0
0 .60
0 .75
0 .30

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
12.4 0
0 9.5

] [
.58 .58 .58 0 0
0 0 0 .71 .71

]

M U Σ V T

Figure 11.7: SVD for the matrix M of Fig. 11.6

11.3.2 Interpretation of SVD

The key to understanding what SVD offers is in viewing the r columns of U ,
Σ, and V as representing concepts that are hidden in the original matrix M . In
Example 11.8, these concepts are clear; one is “science fiction” and the other
is “romance.” Let us think of the rows of M as people and the columns of
M as movies. Then matrix U connects people to concepts. For example, the
person Joe, who corresponds to row 1 of M in Fig. 11.6, likes only the concept
science fiction. The value 0.14 in the first row and first column of U is smaller
than some of the other entries in that column, because while Joe watches only
science fiction, he doesn’t rate those movies highly. The second column of the
first row of U is 0, because Joe doesn’t rate romance movies at all.

The matrix V relates movies to concepts. The 0.58 in each of the first three
columns of the first row of V T indicates that the first three movies – The Matrix,
Alien, and Star Wars – each are of the science-fiction genre, while the 0’s in
the last two columns of the first row say that these movies do not partake of
the concept romance at all. Likewise, the second row of V T tells us that the
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movies Casablanca and Titanic are exclusively romances.
Finally, the matrix Σ gives the strength of each of the concepts. In our

example, the strength of the science-fiction concept is 12.4, while the strength
of the romance concept is 9.5. Intuitively, the science-fiction concept is stronger
because the data provides more information about the movies of that genre and
the people who like them.

In general, the concepts will not be so clearly delineated. There will be fewer
0’s in U and V , although Σ is always a diagonal matrix and will always have
0’s off the diagonal. The entities represented by the rows and columns of M
(analogous to people and movies in our example) will partake of several different
concepts to varying degrees. In fact, the decomposition of Example 11.8 was
especially simple, since the rank of the matrix M was equal to the desired
number of columns of U , Σ, and V . We were therefore able to get an exact
decomposition of M with only two columns for each of the three matrices U , Σ,
and V ; the product UΣV T, if carried out to infinite precision, would be exactly
M . In practice, life is not so simple. When the rank of M is greater than the
number of columns we want for the matrices U , Σ, and V , the decomposition is
not exact. We need to eliminate from the exact decomposition those columns of
U and V that correspond to the smallest singular values, in order to get the best
approximation. The following example is a slight modification of Example 11.8
that will illustrate the point.

Figure 11.8: The new matrixM ′, with ratings for Alien by two additional raters

Example 11.9 : Figure 11.8 is almost the same as Fig. 11.6, but Jill and Jane
rated Alien, although neither liked it very much. The rank of the matrix in
Fig. 11.8 is 3; for example the first, sixth, and seventh rows are independent,
but you can check that no four rows are independent. Figure 11.9 shows the
decomposition of the matrix from Fig. 11.8.

We have used three columns for U , Σ, and V because they decompose a
matrix of rank three. The columns of U and V still correspond to concepts.
The first is still “science fiction” and the second is “romance.” It is harder to
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0
3 3 3 0 0
4 4 4 0 0
5 5 5 0 0
0 2 0 4 4
0 0 0 5 5
0 1 0 2 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

M ′

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

.13 .02 −.01

.41 .07 −.03

.55 .09 −.04

.68 .11 −.05

.15 −.59 .65

.07 −.73 −.67

.07 −.29 .32

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣ 12.4 0 0

0 9.5 0
0 0 1.3

⎤
⎦
⎡
⎣ .56 .59 .56 .09 .09

.12 −.02 .12 −.69 −.69

.40 −.80 .40 .09 .09

⎤
⎦

U Σ V T

Figure 11.9: SVD for the matrix M ′ of Fig. 11.8

explain the third column’s concept, but it doesn’t matter all that much, because
its weight, as given by the third nonzero entry in Σ, is very low compared with
the weights of the first two concepts. �

In the next section, we consider eliminating some of the least important
concepts. For instance, we might want to eliminate the third concept in Ex-
ample 11.9, since it really doesn’t tell us much, and the fact that its associated
singular value is so small confirms its unimportance.

11.3.3 Dimensionality Reduction Using SVD

Suppose we want to represent a very large matrixM by its SVD components U ,
Σ, and V , but these matrices are also too large to store conveniently. The best
way to reduce the dimensionality of the three matrices is to set the smallest of
the singular values to zero. If we set the s smallest singular values to 0, then
we can also eliminate the corresponding s columns of U and V .

Example 11.10 : The decomposition of Example 11.9 has three singular val-
ues. Suppose we want to reduce the number of dimensions to two. Then we
set the smallest of the singular values, which is 1.3, to zero. The effect on the
expression in Fig. 11.9 is that the third column of U and the third row of V T are
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multiplied only by 0’s when we perform the multiplication, so this row and this
column may as well not be there. That is, the approximation to M ′ obtained
by using only the two largest singular values is that shown in Fig. 11.10.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

.13 .02

.41 .07

.55 .09

.68 .11

.15 −.59

.07 −.73

.07 −.29

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
12.4 0
0 9.5

] [
.56 .59 .56 .09 .09
.12 −.02 .12 −.69 −.69

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.93 0.95 0.93 .014 .014
2.93 2.99 2.93 .000 .000
3.92 4.01 3.92 .026 .026
4.84 4.96 4.84 .040 .040
0.37 1.21 0.37 4.04 4.04
0.35 0.65 0.35 4.87 4.87
0.16 0.57 0.16 1.98 1.98

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 11.10: Dropping the lowest singular value from the decomposition of
Fig. 11.7

The resulting matrix is quite close to the matrixM ′ of Fig. 11.8. Ideally, the
entire difference is the result of making the last singular value be 0. However,
in this simple example, much of the difference is due to rounding error caused
by the fact that the decomposition of M ′ was only correct to two significant
digits. �

11.3.4 Why Zeroing Low Singular Values Works

The choice of the lowest singular values to drop when we reduce the number of
dimensions can be shown to minimize the root-mean-square error between the
original matrix M and its approximation. Since the number of entries is fixed,
and the square root is a monotone operation, we can simplify and compare
the Frobenius norms of the matrices involved. Recall that the Frobenius norm

of a matrix M , denoted ‖M‖, is the square root of the sum of the squares of
the elements of M . Note that if M is the difference between one matrix and
its approximation, then ‖M‖ is proportional to the RMSE (root-mean-square
error) between the matrices.

To explain why choosing the smallest singular values to set to 0 minimizes
the RMSE or Frobenius norm of the difference between M and its approxima-
tion, let us begin with a little matrix algebra. Suppose M is the product of
three matrices M = PQR. Let mij , pij , qij , and rij be the elements in row i
and column j of M , P , Q, and R, respectively. Then the definition of matrix
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How Many Singular Values Should We Retain?

A useful rule of thumb is to retain enough singular values to make up
90% of the energy in Σ. That is, the sum of the squares of the retained
singular values should be at least 90% of the sum of the squares of all the
singular values. In Example 11.10, the total energy is (12.4)2 + (9.5)2 +
(1.3)2 = 245.70, while the retained energy is (12.4)2 + (9.5)2 = 244.01.
Thus, we have retained over 99% of the energy. However, were we to
eliminate the second singular value, 9.5, the retained energy would be
only (12.4)2/245.70 or about 63%.

multiplication tells us

mij =
∑
k

∑
�

pikqk�r�j

Then

‖M‖2 =
∑
i

∑
j

(mij)
2 =

∑
i

∑
j

(∑
k

∑
�

pikqk�r�j

)2

(11.1)

When we square a sum of terms, as we do on the right side of Equation 11.1, we
effectively create two copies of the sum (with different indices of summation)
and multiply each term of the first sum by each term of the second sum. That
is, (∑

k

∑
�

pikqk�r�j

)2

=
∑
k

∑
�

∑
m

∑
n

pikqk�r�jpinqnmrmj

we can thus rewrite Equation 11.1 as

‖M‖2 =
∑
i

∑
j

∑
k

∑
�

∑
n

∑
m

pikqk�r�jpinqnmrmj (11.2)

Now, let us examine the case where P , Q, and R are really the SVD of M .
That is, P is a column-orthonormal matrix, Q is a diagonal matrix, and R is
the transpose of a column-orthonormal matrix. That is, R is row-orthonormal;
its rows are unit vectors and the dot product of any two different rows is 0. To
begin, since Q is a diagonal matrix, qk� and qnm will be zero unless k = � and
n = m. We can thus drop the summations for � and m in Equation 11.2 and
set k = � and n = m. That is, Equation 11.2 becomes

‖M‖2 =
∑
i

∑
j

∑
k

∑
n

pikqkkrkjpinqnnrnj (11.3)

Next, reorder the summation, so i is the innermost sum. Equation 11.3 has
only two factors pik and pin that involve i; all other factors are constants as far
as summation over i is concerned. Since P is column-orthonormal, We know
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that
∑

i pikpin is 1 if k = n and 0 otherwise. That is, in Equation 11.3 we can
set k = n, drop the factors pik and pin, and eliminate the sums over i and n,
yielding

‖M‖2 =
∑
j

∑
k

qkkrkjqkkrkj (11.4)

Since R is row-orthonormal,
∑

j rkjrkj is 1. Thus, we can eliminate the
terms rkj and the sum over j, leaving a very simple formula for the Frobenius
norm:

‖M‖2 =
∑
k

(qkk)
2 (11.5)

Next, let us apply this formula to a matrix M whose SVD is M = UΣV T.
Let the ith diagonal element of Σ be σi, and suppose we preserve the first n
of the r diagonal elements of Σ, setting the rest to 0. Let Σ′ be the resulting
diagonal matrix. LetM ′ = UΣ′V T be the resulting approximation to M . Then
M −M ′ = U(Σ − Σ′)V T is the matrix giving the errors that result from our
approximation.

If we apply Equation 11.5 to the matrix M −M ′, we see that ‖M −M ′‖2
equals the sum of the squares of the diagonal elements of Σ − Σ′. But Σ − Σ′

has 0 for the first n diagonal elements and σi for the ith diagonal element,
where n < i ≤ r. That is, ‖M −M ′‖2 is the sum of the squares of the elements
of Σ that were set to 0. To minimize ‖M −M ′‖2, pick those elements to be
the smallest in Σ. Doing so gives the least possible value of ‖M −M ′‖2 under
the constraint that we preserve n of the diagonal elements, and it therefore
minimizes the RMSE under the same constraint.

11.3.5 Querying Using Concepts

In this section we shall look at how SVD can help us answer certain queries
efficiently, with good accuracy. Let us assume for example that we have de-
composed our original movie-rating data (the rank-2 data of Fig. 11.6) into the
SVD form of Fig. 11.7. Quincy is not one of the people represented by the
original matrix, but he wants to use the system to know what movies he would
like. He has only seen one movie, The Matrix, and rated it 4. Thus, we can
represent Quincy by the vector q = [4, 0, 0, 0, 0], as if this were one of the rows
of the original matrix.

If we used a collaborative-filtering approach, we would try to compare
Quincy with the other users represented in the original matrix M . Instead,
we can map Quincy into “concept space” by multiplying him by the matrix V
of the decomposition. We find qV = [2.32, 0].3 That is to say, Quincy is high
in science-fiction interest, and not at all interested in romance.

We now have a representation of Quincy in concept space, derived from, but
different from his representation in the original “movie space.” One useful thing
we can do is to map his representation back into movie space by multiplying

3Note that Fig. 11.7 shows V T, while this multiplication requires V .
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[2.32, 0] by V T. This product is [1.35, 1.35, 1.35, 0, 0]. It suggests that Quincy
would like Alien and Star Wars, but not Casablanca or Titanic.

Another sort of query we can perform in concept space is to find users similar
to Quincy. We can use V to map all users into concept space. For example,
Joe maps to [1.74, 0], and Jill maps to [0, 5.68]. Notice that in this simple
example, all users are either 100% science-fiction fans or 100% romance fans, so
each vector has a zero in one component. In reality, people are more complex,
and they will have different, but nonzero, levels of interest in various concepts.
In general, we can measure the similarity of users by their cosine distance in
concept space.

Example 11.11 : For the case introduced above, note that the concept vectors
for Quincy and Joe, which are [2.32, 0] and [1.74, 0], respectively, are not the
same, but they have exactly the same direction. That is, their cosine distance
is 0. On the other hand, the vectors for Quincy and Jill, which are [2.32, 0] and
[0, 5.68], respectively, have a dot product of 0, and therefore their angle is 90
degrees. That is, their cosine distance is 1, the maximum possible. �

11.3.6 Computing the SVD of a Matrix

The SVD of a matrixM is strongly connected to the eigenvalues of the symmet-
ric matrices MTM and MMT. This relationship allows us to obtain the SVD
of M from the eigenpairs of the latter two matrices. To begin the explanation,
start with M = UΣV T, the expression for the SVD of M . Then

MT = (UΣV T)T = (V T)TΣTUT = VΣTUT

Since Σ is a diagonal matrix, transposing it has no effect. Thus, MT = V ΣUT.
Now, MTM = V ΣUTUΣV T. Remember that U is an orthonormal matrix,

so UTU is the identity matrix of the appropriate size. That is,

MTM = V Σ2V T

Multiply both sides of this equation on the right by V to get

MTMV = V Σ2V TV

Since V is also an orthonormal matrix, we know that V TV is the identity. Thus

MTMV = V Σ2 (11.6)

Since Σ is a diagonal matrix, Σ2 is also a diagonal matrix whose entry in the
ith row and column is the square of the entry in the same position of Σ. Now,
Equation (11.6) should be familiar. It says that V is the matrix of eigenvectors
of MTM and Σ2 is the diagonal matrix whose entries are the corresponding
eigenvalues.
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Thus, the same algorithm that computes the eigenpairs for MTM gives us
the matrix V for the SVD of M itself. It also gives us the singular values for
this SVD; just take the square roots of the eigenvalues for MTM .

Only U remains to be computed, but it can be found in the same way we
found V . Start with

MMT = UΣV T(UΣV T)T = UΣV TV ΣUT = UΣ2UT

Then by a series of manipulations analogous to the above, we learn that

MMTU = UΣ2

That is, U is the matrix of eigenvectors of MMT.
A small detail needs to be explained concerning U and V . Each of these

matrices have r columns, whileMTM is an n×nmatrix andMMT is anm×m
matrix. Both n and m are at least as large as r. Thus, MTM andMMT should
have an additional n− r and m− r eigenpairs, respectively, and these pairs do
not show up in U , V , and Σ. Since the rank of M is r, all other eigenvalues
will be 0, and these are not useful.

11.3.7 Exercises for Section 11.3

Exercise 11.3.1 : In Fig. 11.11 is a matrix M . It has rank 2, as you can see by
observing that the first column plus the third column minus twice the second
column equals 0.

⎡
⎢⎢⎢⎢⎣

1 2 3
3 4 5
5 4 3
0 2 4
1 3 5

⎤
⎥⎥⎥⎥⎦

Figure 11.11: Matrix M for Exercise 11.3.1

(a) Compute the matrices MTM and MMT.

! (b) Find the eigenvalues for your matrices of part (a).

(c) Find the eigenvectors for the matrices of part (a).

(d) Find the SVD for the original matrix M from parts (b) and (c). Note
that there are only two nonzero eigenvalues, so your matrix Σ should have
only two singular values, while U and V have only two columns.

(e) Set your smaller singular value to 0 and compute the one-dimensional
approximation to the matrix M from Fig. 11.11.


