Singular-value Decomposition

DSTA
1 Foundations
1.1 Remember eigenpairs?
Matrix A has a real A\ and a vector v s.t.

Av = v

We think of A as scaling space with a factor A in direction v.
Singular values uncover categories and their strenghts.

The Eigen-decomposition of a square matrix seen in Goodfellow et al. can be extended to
arbitrary matrices!

Before multiplication After multiplication

3 . 3 :
2l 1 2}
1} 1 1
g 0f 1 0Of
_1— - _l—
-2 =2
AT S — I 2 3 23 = -1 o 1 2 3
z, x


https://www.deeplearningbook.org/

Figure 2.3: An example of the effect of eigenvectors and eigenvalues. IHere, we have
a matrix A with two orthonormal eigenvectors, v(!) with eigenvalue \; and v?) with
cigenvalue Aa. (Left)We plot the set of all unit vectors w € R? as a unit circle. (Right)We
plot the set of all points Au. By observing the way that A distorts the unit circle, we
can see that it scales space in direction v'* by A;.

We think of A as scaling space with a factor A in direction v.

f(x) =xT Ax

For unit vectors the max (resp. min) of f(-) corresponds to A (resp. A,).

1.2 Decompose the “effect” of A

Let the square matrix A have n

o linearly-independent e-vectors {v(}) ... v("}

o corresponding e-values {A; > A\ > ...\, }. Then

A = Vdiag M) VT

where V = [v(Dv()  v(™)]
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1.3 A general form for real symmetric Ms
A =QAQT

where Q is an orthogonal matrix of e-vectors and A is a diagonal m.
For repeated A values the decomposition is not unique.
2 Singular-Value Decomposition

2.1 Definition

Singular-value decomp. generalises eigen-decomp.:

e any real matrix has one

e even non-square m. admit one

A = Vdiag \)V!

Atnxm) = Utnxem) Dinxm) Vi)
o U is a orthogonal m. of left-singular (col.) vectors
e D is a diagonal matrix of singular values

o Vs a orthogonal m. of right-singular (col.) vectors

Where does all this come from?

2.2 Interpreting SV-decomposition

e cols. of U will be the e-vectors of AAT
o Dj; = v/A; the i-th e-value of AT A (same for AAT)
e cols. of V will be the e-vectors of AT A

Please see § 2.7 of [Goodfellow et al.]
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3 Moore-Penrose pseudo-inverse

3.1 Motivations

solve linear systems

for non-square (rectangular) matrices:

e n >m: the problem is overconstrained (no solution?)

e n < m: the problem is overparametrized (many sols.?)

3.2 Ideal procedure

If A is squared (n=m) and non-singular (]A| # 0) then

Ax =y
A Ax = A7y
Ix=A"ly

Compute once, run for different values of y.
3.3 Define the pseudo-inverse
A" = lim (ATA+ al)~tAT
a—0

It is proved that AT A ~ I so A" will work as the left-inverse of A

Consequence: over-constrained linear systems can now be solved w. approximation.



3.4 SVD leads to approx. inversion

for the decomposition

A=UDVT

At =vDtuT

where DT, such that D™D = I is easy to calculate: D is diagonal.

Does ATA ~ I?
Yes, because U and V ares. t. UTU =VVT = 1.

vDTUT .UuDvVT =

VvDTIDVT =

VvDTDVT =

vivi =vvT =1
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