Natural Language Processing with Entropy

DSTA

0.1 NLP and Entropy measures

0.2 Motivations

Today, Natural language processing (NLP) is advancing thanks (mostly) to the deployment of sophisticated Machine Learning architectures.

A key enabling factor is the ready availability of large corpora which feed extensive training of the ML architectures

New computational problems are now addressed. Example: given a prompt text, complete the phrase in an intelligible (i.e., human) way.

. . .

Entropy helps us understand and evaluate progress in NL, e.g., in language generation.

0.3 Agenda

- A general introduction to NLP
- Language models: a quick glance
- introduction of Cross-entropy

1 Current Topics in NLP

1.1 Named entities

Suppose, we want to extract Coronavirus symptoms from a stream of Twitter posts dedicated to Covid-19.

Finding a new symptom is the task of *Named Entity Recognition (NER).*

Definition:

given a text find all persons, locations and organisations that the text refers to.

1.2 More challenges

1.2.1 Language generation (prompt generation)

given the initial part of a phrase, called prompt give a *proper* completion of the phrase. . . .

1.2.1.1 Question answering

Given a question in natural language, reply to it *properly.*

We need a metrics to determine what is *proper* for a solution.

1.2.1.2 Phrase completion

Instance: a phrase/sequence of words W

Solution: the next word(s) in the phrase.

. . .

We will focus on this problem.

1.3 Supervised ML

Named entity recognition (and others) are normally addressed by means of a *supervised Machine Learning model.*

It starts with human, reliable annotation of example texts: the training data.

If *well-trained,* the ML model will be capable of predicting the entities in new text.

2 Phrase Completion

2.1 Predicting the next word

An algorithm which assigns probabilities to sequences of words is called a *language model (LM).*

The simplest model assigns probabilities to sentences and sequences of words, the *n-gram.*

2.2 N-gram models

An n-gram is a sequence of n words:

2-gram (bigram): "switch off" or "your homework"

3-gram (trigram): "please turn your," or "turn your homework".

N-gram prediction is based on probabilities.

Probs. are extracted from frequencies of co-occurence in corpora.

. . .

This bigram tabled by [Martin-Jufrasky] is a LM in itself

Figure 3.1 Bigram counts for eight of the words (out of $V = 1446$) in the Berkeley Restaurant Project corpus of 9332 sentences. Zero counts are in gray.

2.3 How to evaluate results

N-gram models estimate the probability of the last word of an n-gram given the previous words.

Bigram counts for eight of the words (out of $V = 1446$) in the Berkeley Restau-**Figure 3.1** rant Project corpus of 9332 sentences. Zero counts are in gray.

Which is the best N-gram model?

To rate them we need Information theory.

3 Cross Entropy

3.1 Approach

Let's consider N-grams.

What is the best N-gram model for predicting the next word of a sequence W?

Information theory provides an abstract yet effective tool to evaluate the quality of solutions (against some test data).

3.2 Preliminaries

Let $P(i)$ and $Q(i)$ be two prob. distributions drawn from the same underlying set of *n* possible *outcomes:* $X = \{x_1, \ldots x_n\}.$

Let $P(i)$ be the current distribution: the text to be evaluated.

Let $Q(i)$ be the *reference distribution*, given by the model (trained on the whole corpus).

The cross-entropy $H(P,Q)$ is defined as

$$
H(P,Q) = -\sum_{i=1}^{n} p(x_i) \log q(x_i)
$$

3.3 Perplexity

Cross-entropy: $H(P,Q) = -\sum_{i=1}^{n} p(x_i) \log q(x_i)$

. . .

Perplexity: $PP(H, Q) = 2^{H(P,Q)}$.

A lower perplexity indicates a better model.

3.4 Computing perplexity

Large-scale NLP models provide a convenient approximation

Let $W = w_1, \ldots, w_N$ be the phrase at hand. For each word occurence w_i , the model assigns a prob. $P(w_i)$. Now, Entropy approximates the cross-entropy of W: $H(W) \approx -\frac{1}{N} \log P(W)$. . .

 $H(W) \approx -\frac{1}{N} \log \prod_{i=1}^{N} P(w_i)$

3.5 Perplexity in action

What is the perplexity of the following test sentence (notice grammar)?

 $W =$ prime corona symptom is fever and cough

$W =$ prime corona symptom is fever and cough

W is now our P distribution

Training data	i have fever of 38.5 degree. They all have fever. prime corona symptom is fever.			
Model	$<$ s1> $ i=1.0$ $i have=0.5$ of $38.5 = 1.0$ prime corona=1.0 is $ $ fever = 0.33	$<$ s1> $ $ They= 1.0 have fever= 0.33 They $ $ all = 1.0 $corona symptom=1.0$ is degree= 1.0	\langle s1> prime= 1.0 fever $of = 1.0$ all $ have=0.5$ symptom $ $ is = 1.0	

$$
\frac{1}{N} = \frac{1}{7}
$$

$$
P(W) = \Pi_{i=1}^{N} P(w_i) = 1 \times 1 \times 1 \times 1 \times 0.33 \times 1 \times 1 = 0.33
$$

Let's compute the Cross entropy of W:

$$
H(W) \approx -\frac{1}{N} \log \Pi_{i=1}^{N} P(w_i)
$$

\n...
\n
$$
H(W) = -\frac{1}{7} \cdot \log(1 \cdot 1 \cdot 1 \cdot 1 \cdot 0.33 \cdot 1 \cdot 1)
$$

\n...
\n
$$
H(W) = -\frac{1}{7} \cdot (-0.625) = 0.089
$$

\n
$$
PP(W) = 2^{H(W)} = 2^{0.089} = 1.063
$$

3.6 Mastering perplexity

 $H(W)$ is the average number of bits needed to encode each word.

 $P(W) = 2^{H(W)}$ is the average number of words that can be encoded using H(W) bits. . . .

However. . .

We interpret perplexity as a weighted branching factor for the possible completions of W.

If PP=1 there is no doubt on what the next word should be.

If PP=100 then whenever the model is trying to guess the next word it is as confused as if it had to pick between 100 words.

 $W = I$ study at Birkbeck...

which is the next likely word?

. . .

*M*1: College

with perplexity 3: University and London are also highly probable completions.

*M*2: University

with perplexity 1.5: College is the only medium-probability alternative.

We prefer M_2 as the lowest-perplexity model.