Natural Language Processing with Entropy

DSTA

0.1 NLP and Entropy measures

0.2 Motivations

Today, Natural language processing (NLP) is advancing thanks (mostly) to the deployment of sophisticated Machine Learning architectures.

A key enabling factor is the ready availability of large corpora which feed extensive training of the ML architectures

New computational problems are now addressed. Example: given a prompt text, complete the phrase in an intelligible (i.e., human) way.

. . .

Entropy helps us understand and evaluate progress in NL, e.g., in language generation.

0.3 Agenda

- A general introduction to NLP
- Language models: a quick glance
- introduction of Cross-entropy

1 Current Topics in NLP

1.1 Named entities

Suppose, we want to extract Coronavirus symptoms from a stream of Twitter posts dedicated to Covid-19.

Finding a new symptom is the task of Named Entity Recognition (NER).

Definition:

given a text find all persons, locations and organisations that the text refers to.

1.2 More challenges

1.2.1 Language generation (prompt generation)

given the initial part of a phrase, called **prompt** give a *proper* completion of the phrase. . . .

1.2.1.1 Question answering

Given a question in natural language, reply to it *properly*. We need a metrics to determine what is *proper* for a solution.

1.2.1.2 Phrase completion

Instance: a phrase/sequence of words W

Solution: the next word(s) in the phrase.

. . .

We will focus on this problem.

1.3 Supervised ML

Named entity recognition (and others) are normally addressed by means of a *supervised Machine Learning model.*

It starts with human, reliable annotation of example texts: the training data.

If well-trained, the ML model will be capable of predicting the entities in new text.

2 Phrase Completion

2.1 Predicting the next word

An algorithm which assigns probabilities to sequences of words is called a *language model* (LM).

The simplest model assigns probabilities to sentences and sequences of words, the *n*-gram.

2.2 N-gram models

An n-gram is a sequence of n words:

2-gram (bigram): "switch off" or "your homework"

3-gram (trigram): "please turn your," or "turn your homework".

N-gram prediction is based on probabilities.

Probs. are extracted from frequencies of co-occurence in corpora.

. . .

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

This bigram tabled by [Martin-Jufrasky] is a LM in itself

Figure 3.1 Bigram counts for eight of the words (out of V = 1446) in the Berkeley Restaurant Project corpus of 9332 sentences. Zero counts are in gray.

2.3 How to evaluate results

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

N-gram models estimate the probability of the last word of an n-gram given the previous words.

Figure 3.1 Bigram counts for eight of the words (out of V = 1446) in the Berkeley Restaurant Project corpus of 9332 sentences. Zero counts are in gray.

Which is the best N-gram model?

To rate them we need Information theory.

3 Cross Entropy

3.1 Approach

Let's consider N-grams.

What is the best N-gram model for predicting the next word of a sequence W?

Information theory provides an abstract yet effective tool to evaluate the quality of solutions (against some test data).

3.2 Preliminaries

Let P(i) and Q(i) be two prob. distributions drawn from the same underlying set of n possible *outcomes*: $X = \{x_1, \ldots, x_n\}$.

Let P(i) be the current distribution: the text to be evaluated.

Let Q(i) be the *reference distribution*, given by the model (trained on the whole corpus).

The cross-entropy H(P,Q) is defined as

$$H(P,Q) = -\sum_{i=1}^{n} p(x_i) \log q(x_i)$$

3.3 Perplexity

Cross-entropy: $H(P,Q) = -\sum_{i=1}^{n} p(x_i) \log q(x_i)$

. . .

Perplexity: $PP(H,Q) = 2^{H(P,Q)}$.

A lower perplexity indicates a better model.

3.4 Computing perplexity

Large-scale NLP models provide a convenient approximation

Let $W = w_1, \ldots, w_N$ be the phrase at hand.

For each word occurrence w_i , the model assigns a prob. $P(w_i)$.

Now, Entropy approximates the cross-entropy of W:

 $H(W) \approx -\frac{1}{N} \log P(W)$

 $H(W) \approx -\frac{1}{N} \log \prod_{i=1}^{N} P(w_i)$

3.5 Perplexity in action

What is the perplexity of the following test sentence (notice grammar)?

 $\mathrm{W}=\texttt{prime}$ corona symptom is fever and cough

$\mathbf{W}=\texttt{prime}$ corona symptom is fever and cough

W is now our P distribution

Training data	i have <mark>fever</mark> of 38.5 degree. They all have <mark>fever</mark> . prime corona symptom is <mark>fever</mark> .					
Model	<s1> i= 1.0 i have=0.5 of 38.5= 1.0 prime corona= 1.0 is fever= 0.33</s1>	<s1> They= 1.0 have fever= 0.33 They all= 1.0 corona symptom= 1.0 is degree= 1.0</s1>	<s1> prime= 1.0 fever of= 1.0 all have=0.5 symptom is= 1.0</s1>			

$$\frac{1}{N} = \frac{1}{7}$$

$$P(W) = \prod_{i=1}^{N} P(w_i) = 1 \times 1 \times 1 \times 1 \times 0.33 \times 1 \times 1 = 0.33$$

Let's compute the Cross entropy of W:

 $H(W) \approx -\frac{1}{N} \log \prod_{i=1}^{N} P(w_i)$... $H(W) = -\frac{1}{7} \cdot \log(1 \cdot 1 \cdot 1 \cdot 1 \cdot 0.33 \cdot 1 \cdot 1)$... $H(W) = -\frac{1}{7} \cdot (-0.625) = 0.089$ $PP(W) = 2^{H(W)} = 2^{0.089} = 1.063$

3.6 Mastering perplexity

 ${\cal H}(W)$ is the average number of bits needed to encode each word.

 $P(W) = 2^{H(W)}$ is the average number of words that can be encoded using H(W) bits. . . .

However...

We interpret perplexity as a weighted branching factor for the possible completions of W.

If PP=1 there is no doubt on what the next word should be.

If PP=100 then whenever the model is trying to guess the next word it is as confused as if it had to pick between 100 words.

 $W={\tt I}$ study at Birkbeck...

which is the next likely word?

. . .

 M_1 : College

with perplexity 3: University and London are also highly probable completions.

 M_2 : University

with perplexity 1.5: College is the only medium-probability alternative.

We prefer M_2 as the lowest-perplexity model.