
Computing Eigenpairs
DSTA

1 From paper to Python

1.1 Background material

This unit is less about computing than about learning/revising how eigehpairs are computed
in Mathematics.

Goal: give a feeling of how these almost-magical entities that are eigenpairs do come to help
us understand latent trends in data.

Please cover this lab in class (if time allows) or at home with pen and paper, in the rest of
the class e-pairs will always be given by the numpy.linalg submodule.

1.2 Exercise

From the MMDS, Ch. 11, pp. 385-387.

Let, M be a square matrix.

Let λ be a constant and e be a non-zero column vector with the same number of rows as
M .

Then λ is an e-value of M and e is its corresponding e-vector if

Me = λe.

This can be reformulated as (M − λI)e = 0.

1

http://mmds.org/


1.3 A worked-out ex.

Let

M =
[
3 2
2 6

]
. . .

Then

M − λI =
[
3 − λ 2

2 6 − λ

]

1.4 The determinant

The determinant of M − λI is (3 − λ)(6 − λ) − 4.

What are the values of λ that make the determinant=0?

|M − λI| = 0 has two roots: λ1 = 7, and λ2 = 2.

Now we can discover the associated eigenvetors.

Recall that Me = λe

At the moment, e is unknown: [x, y]T .

Let’s substitute λ = 7 in the eq.[
3 2
2 6

]
·
[
x
y

]
= 7 ·

[
x
y

]

by multiplying matrix and vector we get two equations:

3x + 2y = 7x

2x + 6y = 7y

Both of the equations really say that y = 2x.

2



Infinte solutions are possible, let’s fix e1 =[
1
2

]
But e1 = vector, since its norm, i.e., the sum of the squares of its components, is 5, not 1.

Thus to get the unit vector in the same direction, we divide each components by
√

5.

So the principal (7 is the max λ value) e-vector is[
1/

√
5

2/
√

5

]

1.5 Can we solve it for the second eigenpair?

import numpy as np

from numpy import linalg as LA

M = np.array([[3,2],[2,6]])

print(M)

w, v = LA.eig(M)

print(w)
print(v)

2 Reference material: The PCA technique

2.1 Objective

What if we want to have less dimensions while still retaining the differences between data
points?

In the Iris example:

-some 2D data plot collapsed datapoints very close to each other (hard to classify them)

-other data plots showed scattered ponts: easier to classify data

Spectral analysis leads to Principal Component Analysis

3



2.2 A new reference system

From MMDS, Ch. 11, pp. 391-396.

Let M represents the dataset.

If we find e-vectors of MMT or MT M , then the matrix made up of these e-vectors will
represent a rigid rotation in the high dimensional space:

unlike the Mona lisa example, distances/shapes are unchanged.

Result: the axis corresponding to the principal e-vector is the one along which the points
are most spread out.

Try the following program and observe the phenomenon.

M=np.array([[1,2], [2,1], [3,4], [4,3]])

MtM = np.matmul(M.T, M)

w,v = LA.eig(MtM)

print(w)
print(v)

ME = np.matmul(M, v)

print(ME)

2.3 Iris: rotation

The principal e-pair (see above) gives the direction of most spread

4

http://mmds.org/


2.4 Iris: compression

The principal e-pair (see above) gives the best 3D-to-1D approximation

5



6


	From paper to Python
	Background material
	Exercise
	A worked-out ex.
	The determinant
	Can we solve it for the second eigenpair?

	Reference material: The PCA technique
	Objective
	A new reference system
	Iris: rotation
	Iris: compression


