
CHAPTER 1 Data Mining and Analysis

Data mining is the process of discovering insightful, interesting, and novel patterns, as
well as descriptive, understandable, and predictive models from large-scale data. We
begin this chapter by looking at basic properties of data modeled as a data matrix. We
emphasize the geometric and algebraic views, as well as the probabilistic interpretation
of data. We then discuss the main data mining tasks, which span exploratory data
analysis, frequent pattern mining, clustering, and classification, laying out the roadmap
for the book.

1.1 DATA MATRIX

Data can often be represented or abstracted as an n× d data matrix, with n rows and
d columns, where rows correspond to entities in the dataset, and columns represent
attributes or properties of interest. Each row in the data matrix records the observed
attribute values for a given entity. The n× d data matrix is given as

D=

⎛
⎜⎜⎜⎜⎜⎜⎝

X1 X2 · · · Xd

x1 x11 x12 · · · x1d

x2 x21 x22 · · · x2d

...
...

...
. . .

...

xn xn1 xn2 · · · xnd

⎞
⎟⎟⎟⎟⎟⎟⎠

where xi denotes the ith row, which is a d-tuple given as

xi = (xi1,xi2, . . . ,xid )

and Xj denotes the j th column, which is an n-tuple given as

Xj = (x1j ,x2j , . . . ,xnj )

Depending on the application domain, rows may also be referred to as entities,
instances, examples, records, transactions, objects, points, feature-vectors, tuples, and so
on. Likewise, columns may also be called attributes, properties, features, dimensions,
variables, fields, and so on. The number of instances n is referred to as the size of
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Table 1.1. Extract from the Iris dataset⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Sepal Sepal Petal Petal
Class

length width length width
X1 X2 X3 X4 X5

x1 5.9 3.0 4.2 1.5 Iris-versicolor
x2 6.9 3.1 4.9 1.5 Iris-versicolor
x3 6.6 2.9 4.6 1.3 Iris-versicolor
x4 4.6 3.2 1.4 0.2 Iris-setosa
x5 6.0 2.2 4.0 1.0 Iris-versicolor
x6 4.7 3.2 1.3 0.2 Iris-setosa
x7 6.5 3.0 5.8 2.2 Iris-virginica
x8 5.8 2.7 5.1 1.9 Iris-virginica
..
.

..

.
..
.

..

.
..
.

..

.

x149 7.7 3.8 6.7 2.2 Iris-virginica
x150 5.1 3.4 1.5 0.2 Iris-setosa

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

the data, whereas the number of attributes d is called the dimensionality of the data.
The analysis of a single attribute is referred to as univariate analysis, whereas the
simultaneous analysis of two attributes is called bivariate analysis and the simultaneous
analysis of more than two attributes is called multivariate analysis.

Example 1.1. Table 1.1 shows an extract of the Iris dataset; the complete data forms
a 150× 5 data matrix. Each entity is an Iris flower, and the attributes include sepal

length, sepal width, petal length, and petal width in centimeters, and the type
or class of the Iris flower. The first row is given as the 5-tuple

x1 = (5.9,3.0,4.2,1.5,Iris-versicolor)

Not all datasets are in the form of a data matrix. For instance, more complex
datasets can be in the form of sequences (e.g., DNA and protein sequences), text,
time-series, images, audio, video, and so on, which may need special techniques for
analysis. However, in many cases even if the raw data is not a data matrix it can
usually be transformed into that form via feature extraction. For example, given a
database of images, we can create a data matrix in which rows represent images and
columns correspond to image features such as color, texture, and so on. Sometimes,
certain attributes may have special semantics associated with them requiring special
treatment. For instance, temporal or spatial attributes are often treated differently.
It is also worth noting that traditional data analysis assumes that each entity or
instance is independent. However, given the interconnected nature of the world
we live in, this assumption may not always hold. Instances may be connected to
other instances via various kinds of relationships, giving rise to a data graph, where
a node represents an entity and an edge represents the relationship between two
entities.



1.2 Attributes 3

1.2 ATTRIBUTES

Attributes may be classified into two main types depending on their domain, that is,
depending on the types of values they take on.

Numeric Attributes
A numeric attribute is one that has a real-valued or integer-valued domain. For
example, Age with domain(Age) = N, where N denotes the set of natural numbers
(non-negative integers), is numeric, and so is petal length in Table 1.1, with
domain(petal length)=R

+ (the set of all positive real numbers). Numeric attributes
that take on a finite or countably infinite set of values are called discrete, whereas those
that can take on any real value are called continuous. As a special case of discrete, if
an attribute has as its domain the set {0,1}, it is called a binary attribute. Numeric
attributes can be classified further into two types:

• Interval-scaled: For these kinds of attributes only differences (addition or subtraction)
make sense. For example, attribute temperature measured in ◦C or ◦F is interval-scaled.
If it is 20 ◦C on one day and 10 ◦C on the following day, it is meaningful to talk about a
temperature drop of 10 ◦C, but it is not meaningful to say that it is twice as cold as the
previous day.

• Ratio-scaled: Here one can compute both differences as well as ratios between values.
For example, for attribute Age, we can say that someone who is 20 years old is twice as
old as someone who is 10 years old.

Categorical Attributes
A categorical attribute is one that has a set-valued domain composed of a set of
symbols. For example, Sex and Education could be categorical attributes with their
domains given as

domain(Sex)= {M,F}
domain(Education)= {HighSchool,BS,MS,PhD}

Categorical attributes may be of two types:

• Nominal: The attribute values in the domain are unordered, and thus only equality
comparisons are meaningful. That is, we can check only whether the value of the
attribute for two given instances is the same or not. For example, Sex is a nominal
attribute. Also class in Table 1.1 is a nominal attribute with domain(class) =
{iris-setosa,iris-versicolor,iris-virginica}.

• Ordinal: The attribute values are ordered, and thus both equality comparisons (is one
value equal to another?) and inequality comparisons (is one value less than or greater
than another?) are allowed, though it may not be possible to quantify the difference
between values. For example, Education is an ordinal attribute because its domain
values are ordered by increasing educational qualification.
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1.3 DATA: ALGEBRAIC AND GEOMETRIC VIEW

If the d attributes or dimensions in the data matrix D are all numeric, then each row
can be considered as a d-dimensional point:

xi = (xi1,xi2, . . . ,xid ) ∈R
d

or equivalently, each row may be considered as a d-dimensional column vector (all
vectors are assumed to be column vectors by default):

xi =

⎛
⎜⎜⎜⎝

xi1

xi2
...

xid

⎞
⎟⎟⎟⎠= (

xi1 xi2 · · · xid

)T ∈R
d

where T is the matrix transpose operator.
The d-dimensional Cartesian coordinate space is specified via the d unit vectors,

called the standard basis vectors, along each of the axes. The j th standard basis vector
ej is the d-dimensional unit vector whose j th component is 1 and the rest of the
components are 0

ej = (0, . . . ,1j , . . . ,0)T

Any other vector in R
d can be written as linear combination of the standard basis

vectors. For example, each of the points xi can be written as the linear combination

xi = xi1e1+ xi2e2+ ·· ·+ xided =
d∑

j=1

xijej

where the scalar value xij is the coordinate value along the j th axis or attribute.

Example 1.2. Consider the Iris data in Table 1.1. If we project the entire data
onto the first two attributes, then each row can be considered as a point or
a vector in 2-dimensional space. For example, the projection of the 5-tuple
x1 = (5.9,3.0,4.2,1.5,Iris-versicolor) on the first two attributes is shown in
Figure 1.1a. Figure 1.2 shows the scatterplot of all the n = 150 points in the
2-dimensional space spanned by the first two attributes. Likewise, Figure 1.1b shows
x1 as a point and vector in 3-dimensional space, by projecting the data onto the first
three attributes. The point (5.9,3.0,4.2) can be seen as specifying the coefficients in
the linear combination of the standard basis vectors in R

3:

x1 = 5.9e1+ 3.0e2+ 4.2e3= 5.9

⎛
⎝1

0
0

⎞
⎠+ 3.0

⎛
⎝0

1
0

⎞
⎠+ 4.2

⎛
⎝0

0
1

⎞
⎠=

⎛
⎝5.9

3.0
4.2

⎞
⎠
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Figure 1.1. Row x1 as a point and vector in (a) R2 and (b) R3.
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Figure 1.2. Scatterplot: sepal length versus sepal width. The solid circle shows the mean point.

Each numeric column or attribute can also be treated as a vector in an
n-dimensional space R

n:

Xj =

⎛
⎜⎜⎜⎝

x1j

x2j

...

xnj

⎞
⎟⎟⎟⎠
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If all attributes are numeric, then the data matrix D is in fact an n× d matrix, also
written as D ∈R

n×d , given as

D=

⎛
⎜⎜⎜⎝

x11 x12 · · · x1d

x21 x22 · · · x2d

...
...

. . .
...

xn1 xn2 · · · xnd

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

— xT
1 —

— xT
2 —
...

— xT
n —

⎞
⎟⎟⎟⎟⎠=

⎛
⎝ | | |

X1 X2 · · · Xd

| | |

⎞
⎠

As we can see, we can consider the entire dataset as an n×d matrix, or equivalently as
a set of n row vectors xT

i ∈R
d or as a set of d column vectors Xj ∈R

n.

1.3.1 Distance and Angle

Treating data instances and attributes as vectors, and the entire dataset as a matrix,
enables one to apply both geometric and algebraic methods to aid in the data mining
and analysis tasks.

Let a,b ∈R
m be two m-dimensional vectors given as

a=

⎛
⎜⎜⎜⎝

a1

a2
...

am

⎞
⎟⎟⎟⎠ b=

⎛
⎜⎜⎜⎝

b1

b2
...

bm

⎞
⎟⎟⎟⎠

Dot Product
The dot product between a and b is defined as the scalar value

aTb= (
a1 a2 · · · am

)×
⎛
⎜⎜⎜⎝

b1

b2
...

bm

⎞
⎟⎟⎟⎠

= a1b1+ a2b2+ ·· ·+ ambm

=
m∑

i=1

aibi

Length
The Euclidean norm or length of a vector a ∈R

m is defined as

‖a‖ =
√

aTa=
√

a2
1 + a2

2+ ·· ·+ a2
m =

√√√√ m∑
i=1

a2
i

The unit vector in the direction of a is given as

u= a
‖a‖ =

(
1
‖a‖

)
a
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By definition u has length ‖u‖ = 1, and it is also called a normalized vector, which can
be used in lieu of a in some analysis tasks.

The Euclidean norm is a special case of a general class of norms, known as
Lp-norm, defined as

‖a‖p =
(
|a1|p+|a2|p+ ·· ·+ |am|p

) 1
p =

( m∑
i=1

|ai|p
) 1

p

for any p �= 0. Thus, the Euclidean norm corresponds to the case when p = 2.

Distance
From the Euclidean norm we can define the Euclidean distance between a and b, as
follows

δ(a,b)= ‖a−b‖ =
√

(a−b)T(a−b)=
√√√√ m∑

i=1

(ai − bi)2 (1.1)

Thus, the length of a vector is simply its distance from the zero vector 0, all of whose
elements are 0, that is, ‖a‖ = ‖a− 0‖= δ(a,0).

From the general Lp-norm we can define the corresponding Lp-distance function,
given as follows

δp(a,b)= ‖a−b‖p (1.2)

If p is unspecified, as in Eq. (1.1), it is assumed to be p = 2 by default.

Angle
The cosine of the smallest angle between vectors a and b, also called the cosine
similarity, is given as

cosθ = aTb
‖a‖‖b‖ =

(
a
‖a‖

)T (
b
‖b‖

)
(1.3)

Thus, the cosine of the angle between a and b is given as the dot product of the unit
vectors a

‖a‖ and b
‖b‖ .

The Cauchy–Schwartz inequality states that for any vectors a and b in R
m

|aTb| ≤ ‖a‖ · ‖b‖

It follows immediately from the Cauchy–Schwartz inequality that

−1≤ cosθ ≤ 1
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Figure 1.3. Distance and angle. Unit vectors are shown in gray.

Because the smallest angle θ ∈ [0◦,180◦] and because cosθ ∈ [−1,1], the cosine
similarity value ranges from +1, corresponding to an angle of 0◦, to −1, corresponding
to an angle of 180◦ (or π radians).

Orthogonality
Two vectors a and b are said to be orthogonal if and only if aTb = 0, which in turn
implies that cosθ = 0, that is, the angle between them is 90◦ or π

2 radians. In this case,
we say that they have no similarity.

Example 1.3 (Distance and Angle). Figure 1.3 shows the two vectors

a=
(

5
3

)
and b=

(
1
4

)

Using Eq. (1.1), the Euclidean distance between them is given as

δ(a,b)=
√

(5− 1)2+ (3− 4)2=
√

16+ 1=
√

17= 4.12

The distance can also be computed as the magnitude of the vector:

a−b=
(

5
3

)
−

(
1
4

)
=

(
4
−1

)

because ‖a−b‖ =
√

42+ (−1)2 =
√

17= 4.12.
The unit vector in the direction of a is given as

ua =
a
‖a‖ =

1√
52+ 32

(
5
3

)
= 1√

34

(
5
3

)
=

(
0.86
0.51

)
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The unit vector in the direction of b can be computed similarly:

ub =
(

0.24
0.97

)

These unit vectors are also shown in gray in Figure 1.3.
By Eq. (1.3) the cosine of the angle between a and b is given as

cosθ =

(
5
3

)T (
1
4

)
√

52+ 32
√

12+ 42
= 17√

34× 17
= 1√

2

We can get the angle by computing the inverse of the cosine:

θ = cos−1
(
1/
√

2
)= 45◦

Let us consider the Lp-norm for a with p= 3; we get

‖a‖3 =
(
53+ 33

)1/3 = (153)1/3= 5.34

The distance between a and b using Eq. (1.2) for the Lp-norm with p = 3 is given as

‖a−b‖3 =
∥∥(4,−1)T

∥∥
3 =

(
43+ (−1)3

)1/3 = (63)1/3 = 3.98

1.3.2 Mean and Total Variance

Mean
The mean of the data matrix D is the vector obtained as the average of all the
points:

mean(D)=μ= 1
n

n∑
i=1

xi

Total Variance
The total variance of the data matrix D is the average squared distance of each point
from the mean:

var(D)= 1
n

n∑
i=1

δ(xi ,μ)2 = 1
n

n∑
i=1

‖xi −μ‖2 (1.4)

Simplifying Eq. (1.4) we obtain

var(D)= 1
n

n∑
i=1

(‖xi‖2− 2xT
i μ+‖μ‖2)

= 1
n

(
n∑

i=1

‖xi‖2− 2nμT

(
1
n

n∑
i=1

xi

)
+n‖μ‖2

)
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= 1
n

(
n∑

i=1

‖xi‖2− 2nμTμ+n‖μ‖2

)

= 1
n

(
n∑

i=1

‖xi‖2

)
−‖μ‖2

The total variance is thus the difference between the average of the squared magnitude
of the data points and the squared magnitude of the mean (average of the points).

Centered Data Matrix
Often we need to center the data matrix by making the mean coincide with the origin
of the data space. The centered data matrix is obtained by subtracting the mean from
all the points:

Z=D− 1 ·μT =

⎛
⎜⎜⎜⎜⎝

xT
1

xT
2

...

xT
n

⎞
⎟⎟⎟⎟⎠−

⎛
⎜⎜⎜⎜⎝

μT

μT

...

μT

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

xT
1 −μT

xT
2 −μT

...

xT
n −μT

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

zT
1

zT
2

...

zT
n

⎞
⎟⎟⎟⎟⎠ (1.5)

where zi = xi −μ represents the centered point corresponding to xi , and 1 ∈ R
n is the

n-dimensional vector all of whose elements have value 1. The mean of the centered
data matrix Z is 0 ∈R

d , because we have subtracted the mean μ from all the points xi .

1.3.3 Orthogonal Projection

Often in data mining we need to project a point or vector onto another vector, for
example, to obtain a new point after a change of the basis vectors. Let a,b ∈Rm be two
m-dimensional vectors. An orthogonal decomposition of the vector b in the direction

0

1

2

3

4

0 1 2 3 4 5
X1

X2

a

b

r= b⊥

p=
b‖

Figure 1.4. Orthogonal projection.
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of another vector a, illustrated in Figure 1.4, is given as

b= b‖ +b⊥ = p+ r (1.6)

where p= b‖ is parallel to a, and r= b⊥ is perpendicular or orthogonal to a. The vector
p is called the orthogonal projection or simply projection of b on the vector a. Note
that the point p ∈ R

m is the point closest to b on the line passing through a. Thus, the
magnitude of the vector r = b− p gives the perpendicular distance between b and a,
which is often interpreted as the residual or error vector between the points b and p.

We can derive an expression for p by noting that p = ca for some scalar c, as p is
parallel to a. Thus, r= b−p= b− ca. Because p and r are orthogonal, we have

pTr= (ca)T(b− ca)= caTb− c2aTa= 0

which implies that

c= aTb
aTa

Therefore, the projection of b on a is given as

p= b‖ = ca=
(

aTb
aTa

)
a (1.7)

Example 1.4. Restricting the Iris dataset to the first two dimensions, sepal length

and sepal width, the mean point is given as

mean(D)=
(

5.843
3.054

)
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Figure 1.5. Projecting the centered data onto the line �.
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which is shown as the black circle in Figure 1.2. The corresponding centered data
is shown in Figure 1.5, and the total variance is var(D) = 0.868 (centering does not
change this value).

Figure 1.5 shows the projection of each point onto the line �, which is the line that
maximizes the separation between the class iris-setosa (squares) from the other
two classes, namely iris-versicolor (circles) and iris-virginica (triangles). The

line � is given as the set of all the points (x1,x2)
T satisfying the constraint

(
x1

x2

)
=

c

(−2.15
2.75

)
for all scalars c ∈R.

1.3.4 Linear Independence and Dimensionality

Given the data matrix

D= (
x1 x2 · · · xn

)T = (
X1 X2 · · · Xd

)
we are often interested in the linear combinations of the rows (points) or the
columns (attributes). For instance, different linear combinations of the original d

attributes yield new derived attributes, which play a key role in feature extraction and
dimensionality reduction.

Given any set of vectors v1,v2, . . . ,vk in an m-dimensional vector space R
m, their

linear combination is given as

c1v1+ c2v2+ ·· ·+ ckvk

where ci ∈ R are scalar values. The set of all possible linear combinations of the k

vectors is called the span, denoted as span(v1, . . . ,vk), which is itself a vector space
being a subspace of Rm. If span(v1, . . . ,vk)=R

m, then we say that v1, . . . ,vk is a spanning
set for Rm.

Row and Column Space
There are several interesting vector spaces associated with the data matrix D, two of
which are the column space and row space of D. The column space of D, denoted
col(D), is the set of all linear combinations of the d attributes Xj ∈R

n, that is,

col(D)= span(X1,X2, . . . ,Xd )

By definition col(D) is a subspace of Rn. The row space of D, denoted row(D), is the
set of all linear combinations of the n points xi ∈R

d , that is,

row(D)= span(x1,x2, . . . ,xn)

By definition row(D) is a subspace of R
d . Note also that the row space of D is the

column space of DT:

row(D)= col(DT)
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Linear Independence
We say that the vectors v1, . . . ,vk are linearly dependent if at least one vector can be
written as a linear combination of the others. Alternatively, the k vectors are linearly
dependent if there are scalars c1,c2, . . . ,ck , at least one of which is not zero, such that

c1v1+ c2v2+ ·· ·+ ckvk = 0

On the other hand, v1, · · · ,vk are linearly independent if and only if

c1v1+ c2v2+ ·· ·+ ckvk = 0 implies c1 = c2 = ·· · = ck = 0

Simply put, a set of vectors is linearly independent if none of them can be written as a
linear combination of the other vectors in the set.

Dimension and Rank
Let S be a subspace of Rm. A basis for S is a set of vectors in S, say v1, . . . ,vk , that are
linearly independent and they span S, that is, span(v1, . . . ,vk) = S. In fact, a basis is a
minimal spanning set. If the vectors in the basis are pairwise orthogonal, they are said
to form an orthogonal basis for S. If, in addition, they are also normalized to be unit
vectors, then they make up an orthonormal basis for S. For instance, the standard basis
for Rm is an orthonormal basis consisting of the vectors

e1 =

⎛
⎜⎜⎜⎝

1
0
...

0

⎞
⎟⎟⎟⎠ e2 =

⎛
⎜⎜⎜⎝

0
1
...

0

⎞
⎟⎟⎟⎠ · · · em =

⎛
⎜⎜⎜⎝

0
0
...

1

⎞
⎟⎟⎟⎠

Any two bases for S must have the same number of vectors, and the number of vectors
in a basis for S is called the dimension of S, denoted as dim(S). Because S is a subspace
of Rm, we must have dim(S)≤m.

It is a remarkable fact that, for any matrix, the dimension of its row and column
space is the same, and this dimension is also called the rank of the matrix. For the data
matrix D ∈ R

n×d , we have rank(D) ≤ min(n,d), which follows from the fact that the
column space can have dimension at most d , and the row space can have dimension at
most n. Thus, even though the data points are ostensibly in a d dimensional attribute
space (the extrinsic dimensionality), if rank(D) < d , then the data points reside in a
lower dimensional subspace of Rd , and in this case rank(D) gives an indication about
the intrinsic dimensionality of the data. In fact, with dimensionality reduction methods
it is often possible to approximate D ∈ R

n×d with a derived data matrix D′ ∈ R
n×k,

which has much lower dimensionality, that is, k 
 d . In this case k may reflect the
“true” intrinsic dimensionality of the data.

Example 1.5. The line � in Figure 1.5 is given as � = span
((−2.15 2.75

)T
)
, with

dim(�) = 1. After normalization, we obtain the orthonormal basis for � as the unit
vector

1√
12.19

(−2.15
2.75

)
=

(−0.615
0.788

)


