
DSTA

Rating and Ranking with Markov’s Method:

The Premier League case

This is the solution notebook.

We will analyse Premier League results for these two interesting seasons; results have been
downloaded from www.footballwebpages.co.uk:

• the 2021 - 2022 season, and
• 2022 - 2023 season.

Import necessary Python packages

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler

Set Pandas and Numpy options for printing results

np.set_printoptions(linewidth=1000)

pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
pd.set_option('display.width', 1000)
pd.set_option('display.colheader_justify', 'center')

1

https://www.footballwebpages.co.uk/premier-league
https://www.footballwebpages.co.uk/premier-league/match-grid/2021-2022
https://www.footballwebpages.co.uk/premier-league/match-grid/2022-2023

Premier League winners:

• 2021 - 2022: Manchester City (1-point gap from Liverpool that finished second)

• 2022 - 2023: Manchester City (5-points gap from Arsenal that finished second)

File names

League table files
premier_league_table_2017_2018 = "./data/2017_2018_LeagueTable.csv"
premier_league_table_2018_2019 = "./data/2018_2019_LeagueTable.csv"
premier_league_table_2019_2020 = "./data/2019_2020_LeagueTable.csv"
premier_league_table_2020_2021 = "./data/2020_2021_LeagueTable.csv"
premier_league_table_2021_2022 = "./data/2021_2022_LeagueTable.csv"
premier_league_table_2022_2023 = "./data/2022_2023_LeagueTable.csv"

Match grid files
premier_league_match_grid_2017_2018 = "./data/2017_2018_MatchGrid.csv"
premier_league_match_grid_2018_2019 = "./data/2018_2019_MatchGrid.csv"
premier_league_match_grid_2019_2020 = "./data/2017_2018_MatchGrid.csv"
premier_league_match_grid_2020_2021 = "./data/2020_2021_MatchGrid.csv"
premier_league_match_grid_2021_2022 = "./data/2021_2022_MatchGrid.csv"
premier_league_match_grid_2022_2023 = "./data/2022_2023_MatchGrid.csv"

Set current working data files and next season files

Hint: Change these variables in case you would like to rate / rank teams based on a different
season and check the estimates against the actual rankings of the following season.

Current (working) season
current_league_table_file = premier_league_table_2021_2022

current_match_grid_file = premier_league_match_grid_2021_2022

current_season = "2021 - 2022"

Merged results of current season from Massey and Keener
merged_results_2021_2022 = "./data/2021_2022_MergedResults.csv"

Next season

2

coming_league_table_file = premier_league_table_2022_2023

coming_match_grid_file = premier_league_match_grid_2022_2023

coming_season = "2022 - 2023"

Markov’s method

For Markov we need again the match grid

Each match entry is in the format ="GH-GA" (except from NaN in diagonal).
GH are goals scored by the home team, and GA are goals scored by the away team
Below, we read the match grid CSV and remove '=' and '"'

match_grid = (
pd.read_csv(current_match_grid_file, dtype=str, index_col=0)
.replace('"' , '', regex=True)
.replace('=' , '', regex=True)
.fillna("0-0")
)

match_grid

Create Markov’s V matrix

Below is a refresher

𝑉𝑛×𝑛 where 𝑉𝑖𝑗 ∶ Total goals conceded from team i against team j

Here n represents the number of teams in the league

Create Markov’s S matrix

Below is a refresher

𝑆𝑛×𝑛 where 𝑆𝑖𝑗 ∶ Total goals team i conceded from team j, divided by the total goals team i
conceded.

Again, n here represents the number of teams in the league

Exercise 1: Complete the code to calculate Markov’s V and S matrices

3

Step-by-step:

1. Parse scores. Example: “3-2”. The home team scored 3 goals and the away team 2.

Hint: Pandas applymap documentation

2. Match every team’s home match with the respective away match against the same op-
ponent.

Hint: The home match of team i against j is element ij. The respective away match is element
ji - row and column indexes are swapped…

Parse score and get goals conceded at home
home_goals_ij = lambda score: int(score.split("-")[1])
all_home_goals_ij = match_grid.applymap(home_goals_ij)

Parse score and get goals conceded away
The grid is transposed to match every team's respective
home and away matches
away_goals_ij = lambda score: int(score.split("-")[0])
all_away_goals_ij = match_grid.T.applymap(away_goals_ij)

Sum goals conceded
V_dataframe = all_home_goals_ij + all_away_goals_ij

row_sums: Sum of goals each team conceded
row_sums = V_dataframe.sum(axis=1)

Create S matrix
S_dataframe = V_dataframe.div(row_sums, axis=0)

Create transition and counter dictionaries

Dictionary with teams as keys and lists of probabilities as values
Each list represents a probability of moving from current team
to another team of the league (fair-weather fan logic)
transit_dict = S_dataframe.T.to_dict(orient = "list")

teams = S_dataframe.columns.tolist()

Dictionary with teams as keys and number of visits as values
counter_dict = {team: 0 for team in teams}

4

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.applymap.html

Run Markov simulation with fair-weather fan

N = 100_000

Initialize process by randomly selecting a team
curr_team = np.random.choice(teams)
counter_dict[curr_team] += 1

Run the simulation
for i in range(N):

probs = transit_dict[curr_team]
curr_team = np.random.choice(teams, p = probs)
counter_dict[curr_team] += 1

Get the ratings
ratings = [count / (N + 1) for count in counter_dict.values()]
markov_df = (

pd.DataFrame(ratings, index = teams, columns=["Markov_Rating"])
.sort_values(by="Markov_Rating", ascending=False)
)

Use a MinMaxScaler to scale Markov ratings between 0 and 100 for plotting.

Please see the relative sklearn MinMaxScaler documentation.

Scale the ratings between 100 (top team) and 0 (weakest team).
MinMaxScaler accepts a tuple (min, max) as input argument to define the range.
min_max_scaler = MinMaxScaler((0, 100))
markov_df["Markov_Scaled_Rating"] = min_max_scaler.fit_transform(

markov_df.loc[:, "Markov_Rating"].values.reshape(-1, 1)
)

Add Markov ranking.

Add Markov ranking
markov_df["Markov_Ranking"] = np.arange(1, 21)

markov_df

5

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html

Add Markov results to the match grid table

match_grid = match_grid.join(markov_df)
match_grid

Import the league table to get actual rankings and points scored

Read the league table data - skip the first row
league_table = pd.read_csv(current_league_table_file, skiprows = 1)

league_table["Actual_Ranking"] = np.arange(1, 21)

league_table

We keep only teams, actual ranking and points.

required_cols = ["Unnamed: 1", "Pts", "Actual_Ranking"]

renaming = {"Unnamed: 1": "Teams", "Pts": "Points"}

Make a copy of the league table, keeping only the necessary columns renamed
Index is reset as the teams for the table join below
league_table = (

league_table
.loc[:, required_cols]
.copy()
.rename(columns=renaming)
.set_index("Teams")

)

league_table

Join the match grid that holds Markov ratings with the league table and the actual ratings
based on team names

match_grid = match_grid.join(league_table)

match_grid

6

Keep Markov rating and ranking from the match grid

cols_to_keep = [
"Markov_Rating",
"Markov_Scaled_Rating",
"Markov_Ranking"
]

Data needed from Markov output - sort by actual ranking first
data_to_keep = (

match_grid
.sort_values("Actual_Ranking", ascending = True)
.loc[:, cols_to_keep]
.copy()
)

Import merged data with Massey and Keener results

Use Teams column as index to join it later with Markov
merged_results = pd.read_csv(merged_results_2021_2022, index_col = "Teams")

Merge Markov results with Massey and Keener results

Merge the data
merged_results = merged_results.join(data_to_keep)

merged_results

Plot Markov’s scaled rating and ranking side by side with actual ranking and points scored

Documentation for matplotlib.pyplot horizontal bar plots

Initialize grid of plots
figure, axis = plt.subplots(nrows = 1, ncols = 2, figsize = (12, 4), dpi = 160)

Plot Keener scaled rating - plot 0, row 0
axis[0].barh(

match_grid["Markov_Ranking"],
match_grid["Markov_Scaled_Rating"],

7

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.barh.html

height = 0.6, align = 'center'
)

Configure y axis
axis[0].set_yticks(

match_grid["Markov_Ranking"],
labels = match_grid.index,
fontsize = 7
)

axis[0].invert_yaxis() # labels read top-to-bottom

X-axis and title
axis[0].tick_params(axis = "x", labelsize = 6)
axis[0].set_xlabel('Markov Scaled Rating', fontsize = 8)
axis[0].set_title(f'Season {current_season} Markov Scaled Rating', fontsize = 8)

Plot actual ranking and point scored - plot 1, row 0
axis[1].barh(

match_grid["Actual_Ranking"],
match_grid["Points"],
height = 0.6, align = 'center'
)

Configure y axis
axis[1].set_yticks(

match_grid["Actual_Ranking"],
labels = match_grid.index,
fontsize = 7
)

axis[1].invert_yaxis() # labels read top-to-bottom

X-axis and title
axis[1].tick_params(axis = "x", labelsize = 6)
axis[1].set_xlabel('Actual Points', fontsize = 8)
axis[1].set_title(f'Season {current_season} Points Scored', fontsize = 8)

Use 'tight_layout' to avoid overlapping text
plt.tight_layout()
plt.show()

8

Get rankings from all methods in a new table

rankings = [
"Actual_Ranking",
"Massey_Ranking",
"Keener_Ranking",
"Markov_Ranking"
]

ranks_df = merged_results.loc[:, rankings].copy()
ranks_df

ranks_df.corr()

Import the table of the subsequent season to check

Read the league table data - skip the first row
next_league_table = pd.read_csv(coming_league_table_file, skiprows = 1)

next_league_table["Actual_Ranking"] = np.arange(1, 21)

Uncomment if you want to see the raw table
league_table

Keep necessary columns and rename them

required_cols = ["Unnamed: 1", "P.2", "W.2", "D.2", "L.2", "F",
"A", "+/-", "Pts", "Actual_Ranking"]

renaming = {
"Unnamed: 1": "Teams",
"P.2": "Total_Matches_Played",
"W.2": "Total_Wins",
"D.2": "Total_Draws",
"L.2": "Total_Losses",
"F": "Goals_Scored",
"A": "Goals_Conceded",
"+/-": "Goal_Difference",
"Pts": "Points"

9

}

Make a copy of the league table, keeping only the necessary columns renamed
next_league_table = (

next_league_table
.loc[:, required_cols]
.copy()
.rename(columns = renaming)

)

next_league_table

Recall estimated rankings from Massey, Keener and Markov

ranks_df

10

	Import necessary Python packages
	Set Pandas and Numpy options for printing results
	Premier League winners:
	File names
	Set current working data files and next season files
	Markov's method
	Get rankings from all methods in a new table

