Chapter Six
The Markov Method

This new method for ranking sports teams invokes an old
technique from A. A. Markov, and thus, we call it the Markov
method.! In 1906 Markov invented his chains, which were
later labeled as Markov chains, to describe stochastic pro-
cesses. While Markov first applied his technique to lin-
guistically analyze the sequence of vowels and consonants
in Pushkin’s poem Eugene Onegin, his chains have found a
plethora of applications since [8, 80]. Very recently graduate
students of our respective universities, Anjela Govan (Ph.D.
North Carolina State University, 2008) [34] and Luke In-
gram (M.S., College of Charleston, 2007) [41] used Markov
chains to successfully rank NFL football and NCAA basket-
ball teams respectively. [ asanss

The Markov Method

The Main Idea behind the Markov Method

The Markov rating method can be summarized with one word: voting. Every
matchup between two teams is an opportunity for the weaker team to vote for the
stronger team.

There are many measures by which teams can cast votes. Perhaps the simplest vot-
ing method uses wins and losses. A losing team casts a vote for each team that beats
it. A more advanced model considers game scores. In this case, the losing team casts a
number of votes equal to the margin of victory in its matchup with a stronger opponent.
An even more advanced model lets both teams cast votes equal to the number of points
given up in the matchup. At the end, the team receiving the greatest number of votes from
quality teams earns the highest ranking. This idea is actually an adaptation of the famous
PageRank algorithm used by Google to rank webpages [49]. The number of modeling
tweaks is nearly endless as the discussion on page 71 shows. However, before jumping to
enhancements, let’s go directly to our running example.

IThere are at least two other existing sports ranking models that are based on Markov chains. One is the
product of Peter Mucha and his colleagues and is known as the Random Walker rating method [17]. The other is
the work of Joel Sokol and Paul Kvam and is called LRMC [48].
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Voting with Losses

The voting matrix V that uses only win-loss data appears below.

Duke Miami UNC UVA VT

Duke 0 1 1 1 1
Miami 0 0 0 0 0
V = UNC 0 1 0 0 1
UVA 0 1 1 0 1
VT 0 1 0 0 0

Because Duke lost to all its opponents, it casts votes of equal weight for each team. In order
to tease a ranking vector from this voting matrix we create a (nearly) stochastic matrix N
by normalizing the rows of V.

Duke Miami UNC UVA VT

Duke 0 1/4  1/4 1/4 1/4
Miami [ 0 0 0 0 0
N = UNC 0 1/2 0 0 1/2
UVA 0 /3 1/3 0 1/3
VT 0 1 0 0 0

N is substochastic at this point because Miami is an undefeated team. This is akin to the
well-known dangling node problem in the field of webpage ranking [49]. The solution
there, which we borrow here, is to replace all 07 rows with 1/n e’ so that N becomes a
stochastic matrix S.

Duke Miami UNC UVA VT

Duke 0 1/4 1/4 1/4 1/4
Miami | 1/5 1/5 1/5 1/5 1/5
S = UNC 0 12 0 0 1/2
UVA o 1/3 1/3 0 1/3
VT 0 1 0 0 0

While dangling nodes (a webpage with no outlinks) are prevalent in the web context [51,
26], they are much less common over the course of a full sports season. Nevertheless,
there are several other options for handling undefeated teams. Consequently, we devote
the discussion on page 73 to the presentation of a few alternatives to the uniform row
option used above.

Again in analogy with the webpage PageRank algorithm we compute the stationary
vector of this stochastic matrix. The stationary vector r is the dominant eigenvector of
S and solves the eigensystem Sr = r [54]. The following short story explains the use
of the stationary vector as a means for ranking teams. The main character of the story
is a fair weather fan who constantly changes his or her support to follow the current best
team. The matrix S can be represented with the graph in Figure 6.1. The fair weather fan
starts at any node in this network and randomly chooses his next team to support based on
the links leaving his current team. For example, if this fan starts at UNC and asks UNC,
“who is the best team?”, UNC will answer “Miami or VT, since they both beat us.” The
fan flips a coin and suppose he ends up at VT and asks the same question. This time VT
answers that Miami is the best team and so he jumps on the Miami bandwagon. Once
arriving at the Miami camp he asks his question again. Yet because Miami is undefeated
he jumps to any team at random. (This is due to the addition of the 1/5 e’ row, but there
are several other clever strategies for handling undefeated teams that still create a Markov
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Figure 6.1 Fair weather fan takes a random walk on this Markov graph

chain with nice convergence properties. See page 73.) If the fair weather fan does this
continually and we monitor the proportion of time he visits each team, we will have a
measure of the importance of each team. The team that the fair weather fan visits most
often is the highest ranked team because the fan kept getting referred there by other strong
teams. Mathematically, the fair weather fan takes a random walk on a graph defined by a
Markov chain, and the long-run proportion of the time he spends in the states of the chain
is precisely the stationary vector or dominant eigenvector of the chain. For the five-team
example, the stationary rating vector r of S and its corresponding ranking are in Table 6.1.

Table 6.1 Markov:Losses rating results for the 5-team example

Team r Rank
Duke 087  5th
Miami 438 Ist
UNC 146 3rd
UVA 110 4th
VT 219  2nd

Fair Weather Fan Takes a Random Walk on Markov Graph

The Markov rating vector gives the long-run proportion of time that a fair weather
fan taking a random walk on the Markov graph spends with each team.

Losers Vote with Point Differentials

Of course, teams may prefer to cast more than one vote for opponents. Continuing with
the fair weather fan story, UNC might like to cast more votes for VT than Miami since VT
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beat them by 27 points while Miami only beat them by 18. In this more advanced model,
the voting and stochastic matrices are

Duke Miami UNC UVA VT

Duke 0 45 3 31 45

Miami 0 0 0 0 0

V = UNC 0 18 0 0 27

UVA 0 8 2 0 38

VT 0 20 0 0 0

and

Duke Miami UNC UVA VT
Duke 0 45/124 3/124 31/124 45/124

Miami [ 1/5  1/5 1/5 1/5 1/5

S = UNC 0 18/45 0 0 27/45
UVA 0 8/48  2/48 0 38/48
VT 0 1 0 0 0

This model produces the ratings and rankings listed in Table 6.2. Voting with point dif-
ferentials results in a slightly different ranking yet significantly different ratings from the
elementary voting model. Such differences may become important if one wants to go
beyond predicting winners to predict point spreads.

Table 6.2 Markov:Point Differentials rating results for the 5-team example

Team r Rank
Duke 088 5th
Miami 442 Ist
UNC 095  4th
UVA 10 3rd
VT 265 2nd

When two teams faced each other more than once in a season, the modeler has a
choice for the entries in the voting matrix. The entry can represent either the cumulative or
the average point differential between the two teams in all matchups that season.

Winners and Losers Vote with Points

In a yet more advanced model, we let both the winning and losing teams vote with the
number of points given up. This model uses the complete point score information. In this
case, the V and S matrices (which we now label Vi, and Sy,.ip: to distinguish them
from the matrices on page 72) are

Duke Miami UNC UVA VT

Duke 0 52 24 38 45

Miami [ 7 0 6 17 7

V point = UNC 21 34 0 5 30
UVA 7 25 7 0 52

VT 0 27 3 14 0
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and
Duke Miami UNC UVA vT
Duke 0 52/159 24/159 38/159 45/159
Miami [ 7/47 0  16/47 17/47  7/47
Spoz‘nt — UNC 21/90 34/90 0 5/90 30/90
UVA 7/91 25/91 7/91 0 52/91
VT 0  27/44 3/44  14/44 0

Notice that this formulation of S has the added benefit of making the problem of undefeated
teams obsolete. A zero row appears in the matrix only in the unlikely event that a team
held all its opponents to scoreless games. The rating and ranking vectors for this model
appear in Table 6.3.

Table 6.3 Markov:Winning and Losing Points rating results for the 5-team example

Team r Rank
Duke 095 5th
Miami .296 Ist
UNC 149  4th
UVA 216  3rd
VT 244  2nd

Beyond Game Scores

Sports fans know that game scores are but one of many statistics associated with a contest.
For instance, in football, statistics are collected on yards gained, number of turnovers,
time of possession, number of rushing yards, number of passing yards, ad nauseam. While
points certainly have a direct correlation with game outcomes, this is ultimately not the only
thing one may want to predict (think: point spread predictions). Naturally, a model that
also incorporates these additional statistics is a more complete model. With the Markov
model, it is particularly easy to incorporate additional statistics by creating a matrix for
each statistic. For instance, using the yardage information from Table 6.4 below, we build
a voting matrix for yardage whereby teams cast votes using the number of yards given up.

Table 6.4 Total yardage data for the 5-team example

Duke Miami UNC UVA VT
Duke 100-557 209-357 207-315  35-362
Miami  557-100 321-188 500-452 304-167
UNC  357-209 188-321 270-199  196-338
UVA 315-207 452-500 199-270 334-552

VT 362-35 167-304 338-196 552-334
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Duke Miami UNC UVA VT

Duke 0 577 357 315 362
Miami [ 100 0 188 452 167
Vyardage = UNC | 209 321 0 199 338
UVA 207 500 270 0 552
VT 35 304 196 334 0

The (Duke, Miami) element of 577 means that Duke allowed Miami to gain 577 yards
against them and thus Duke casts votes for Miami relative to this large number. Row
normalizing produces the stochastic matrix Sy ,,dqge below.

Duke Miami UNC UVA VT
Duke 0 577/1611 357/1611 315/1611 362/1611
Miami 100/907 0 188/907  452/907  167/907
Syardage — UNC 209/1067 321/1067 0 199/1067 338/1067
UVA 207/1529 500/1529 270/1529 0 552/1529
VT 35/869 304/869 196/869  334/869 0

The rating and ranking vectors produced by S, ,,4qge appear in Table 6.5.

Table 6.5 Markov:Yardage rating results for the 5-team example

Team r Rank
Duke 105 5th
Miami 249 2nd
UNC 170  4th
UVA 260 Ist
VT 216  3rd

Of course, there’s nothing special about point or yardage information—any statisti-
cal information can be incorporated. The key is to simply remember the voting analogy.
Thus, in a similar fashion the S;yrnover and Sy, matrices are

Duke Miami UNC UVA VT

Duke 0 1/9  3/9 4/9 1/9
Miami [ 3/9 0 4/9  1/9 1/9

Siurnover = UNC 2/7  3/7 o 1/7 17 and
UVA 1/5 0 1/5 0 3/5
VT 1/10  6/10 2/10 1/10 0
Duke Miami UNC UVA VT
Duke 0 29.7/118.6 30.8/118.6 28/118.6 30.1/118.6
Miami [ 30.3/123.6 0 36.3/123.6 31/123.6  26/123.6
Sposs = UNC [ 20.1/111.6 23.7/111.6 0 27.5/111.6 31.3/111.6
UVA 32/131.9  29/131.9 32.5/131.9 0 38.4/131.9
VT 20.9/114.2 34/114.2 28.7/114.2 21.6/114.2 0

The next step is to combine the stochastic matrices for each individual statistic into
a single matrix S that incorporates several statistics simultaneously. As usual, there are a
number of ways of doing this. For instance, one can build the lone global S as a convex
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combination of the individual stochastic matrices, Spoint, Syardages Sturnovers and Sposs

so that
S = alspoint + 042Syardage + QSSturnover + 044Sp0857

where a1, o, ag, g > 0 and o + as + a3 + a4 = 1. The use of the convex combination
guarantees that S is stochastic, which is important for the existence of the rating vector. The
weights «; can be cleverly assigned based on information from sports analysts. However,
to demonstrate the model now, we use the simple assignment oy = as = g = ay = 1/4,
which means

Duke Miami UNC UVA VT

Duke 0 0.2617 0.2414 0.2788 0.2182 .15
Miami [ 0.2094 0 0.3215 0.3055 0.1636 24
S = UNC 0.2439 0.3299 0 0.1578 0.2684 and r= | .19
UVA 0.1637 0.2054 0.1750 0 0.4559 .20
VT 0.1005 0.4653 0.1863 0.2479 0 21

The beauty of the Markov model is its flexibility and ability for almost endless tuning.
Nearly any piece of statistical information (home-field advantage, weather, injuries, etc.)
can be added to the model. Of course, the art lies in the tuning of the «; parameters.

Handling Undefeated Teams

Some of the methods for filling in entries of the Markov data that were described earlier in
this chapter make it very likely to encounter a row of all zeros, which causes the Markov
matrix to be substochastic. This substochasticity causes a problem for the Markov model,
which requires a row stochastic matrix in order to create a ranking vector. In the example
on page 68, we handled the undefeated team of Miami with a standard trick from webpage
ranking —replace all 07 rows with 1/n e”". While this mathematically solves the problem
and creates a stochastic matrix, there are other ways to handle undefeated teams that may
make more sense in the sports setting.

For instance, rather than forcing the best team to cast an equal number of votes for
each team, including itself, why not let the best team vote only for itself. In this case, for
each undefeated team i, replace the 07 row with e, which is a row vector representing
the i*" row of the identity matrix. Now the data creates a stochastic matrix and hence
a Markov chain. However, this fix creates another problem. In fact, this is a potential
problem that pertains to the reducibility of the matrix for all Markov models, though it
is a certainty in this case. In order for the stationary vector to exist and be unique, the
Markov chain must be irreducible (and also aperiodic, which is nearly always satisfied)
[54]. An irreducible chain is one in which there is a path from every team to every other
team. When undefeated teams vote only for themselves, the chain is reducible as these
teams become absorbing states of the chain. In other words, the fair weather fan who takes
a random walk on the graph will eventually get stuck at an undefeated team. Here again
we employ a trick from webpage ranking and simply add a so-called teleportation matrix
E to the stochasticized voting matrix S [49]. Thus, for 0 < 3 < 1, the Markov matrix Sis

S=p3S+(1-p5)/nE,

where E is the matrix of all ones and n is the number of teams. Now S is irreducible as
every team is directly connected to every other team with at least some small probability,
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and the stationary vector of S exists and is unique. This rating vector depends on the choice
of the scalar 3. Generally the higher [3 is, the truer the model stays to the original data.
When the data pertains to the Web, 3 = .85 is a commonly cited measure [15]. Yet for
sports data, a much lower (3 is more appropriate. Experiments have shown 3 = .6 works
well for NFL data [34] and 3 = .5 for NCAA basketball [41]. Regardless, the choice for
[ seems application, data, sport, and even season-specific.

Another technique for handling undefeated teams is to send the fair weather fan back
to the team he just came from, where he can then continue his random walk. This bounce-
back idea has been implemented successfully in the webpage ranking context [26, 53,
49, 77] where it models nicely the natural reaction of using the BACK button in a browser.
While this bounce-back idea is arguably less pertinent in the sports ranking context, it may,
nevertheless, be worth exploring. The illustration below summarizes the three methods for
handling undefeated teams.
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Summary of the Markov Rating Method

The shaded box below assembles the labeling conventions we have adopted to describe our
Markov method for ranking sports teams.

Notation for the Markov Rating Method

k number of statistics to incorporate into the Markov model

Vtati> Vstat2s ---» Vstatk  Taw voting matrix for each game statistic &
[V stat]i; = number of votes team ¢ casts for team j using statistic stat

Sstatl> Sstat2s ---» Sstatk  Stochastic matrices built from corresponding voting
matrices Vtat1, Vstat2s -5 Vstatk

S final stochastic matrix built from Sgia1, Sstat2s - - - » Sstatks
S = a1Sstat1 + @2Sstat2 + -+ + Sstatk

a; weight associated with game statistic ¢; Zle a; = 1land o; > 0.

S stochastic Markov matrix that is guaranteed to be irreducible;
S=p8+(1-p)/nE, 0<p<1

r Markov rating vector; stationary vector (i.e., dominant eigenvector) of S

n number of teams in the league = order of S

Since most mathematical software programs, such as MATLAB and Mathematica,
have built-in functions for computing eigenvectors, the instructions for the Markov method
are compact.

MARKOV METHOD FOR RATING TEAMS

1. Form S using voting matrices for the k£ game statistics of interest.
S = CYlsstatl + 052Sstat2 +... aksstatkv
where «; > 0 and Zle o; = 1.

2. Compute r, the stationary vector or dominant eigenvector of S. (If S is reducible,
use the irreducible S = 3S + (1 — () /n E instead, where 0 < 3 < 1.)

We close this section with a list of properties of Markov ratings.

e In a very natural way the Markov model melds many game statistics together.

e The rating vector r > 0 has a nice interpretation as the long-run proportion of time
that the fair weather fan (who is taking a random walk on the voting graph) spends
with any particular team.

e The Markov method is related to the famous PageRank method for ranking web-
pages [14].
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e Undefeated teams manifest as a row of zeros in the Markov matrix, which makes
the matrix substochastic and causes problems for the method. In order to produce a
ranking vector, each substochastic row must be forced to be stochastic somehow. The
discussion on page 73 outlines several methods for doing this and forces undefeated
teams to vote.

e The stationary vector of the Markov method has been shown, like PageRank, to
follow a power law distribution. This means that a few teams receive most of the
rating, while the great majority of teams must share the remainder of the miniscule
leftover rating. One consequence of this is that the Markov method is extremely
sensitive to small changes in the input data, particularly when those changes involve
low-ranking teams in the tail of the power law distribution. In the sports context, this
means that upsets can have a dramatic and sometimes bizarre effect on the rankings.
See [21] for a detailed account on this phenomenon.

Connection between the Markov and Massey Methods

While the Markov and Massey methods seem to have little in common, a graphical repre-
sentation reveals an interesting connection. As pointed out earlier in this chapter, there are
several ways to vote in the Markov method. Because the Massey method is built around
point differentials, the Markov method that votes with point differentials is most closely
connected to the Massey method. Consider Figure 6.2, which depicts the Markov graph
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Figure 6.2 Markov graph of point differential voting matrix

associated with the point differential voting matrix V of page 70. This graph actually
holds precisely the same information used by the Massey method. Recall the fundamental
equation of the Massey method, which for a game k between teams ¢ and j creates a linear
equation of the form r; — r; = y,, meaning that team ¢ beat team j by y;, points in that
matchup. Thus for our five team example, since VT beat UNC by 27 points, Massey creates
the equation ry7 — rync = 27. If we create a graph with this point differential informa-
tion, we have the graph of Figure 6.3, which is simply the transpose of the Markov graph.
Both graphs use point differentials to weight the links but the directionality of the links is
different. In the Massey graph, the direction of the link indicates dominance whereas it
signifies weakness in the Markov graph.

Though the two graphs are essentially the same, the two methods are quite different
in philosophy. Given the weights from the links, both methods aim to find weights for the
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Figure 6.3 Massey graph for the same five team example as Figure 6.2

nodes. The Markov method finds such node weights with a random walk. Recall the fair
weather fan who takes a random walk on this graph (or more precisely, the stochasticized
version of this graph). The long-run proportion of time the fair weather fan spends at
any node ¢ is its node weight r;. On the other hand, the Massey method finds these node
weights with a fitting technique. That is, it finds the node weights r; that best fit the given
link weights. Perhaps the following metaphors are helpful.

Metaphors for the Markov and Massey methods

The Markov method sets a traveler in motion on its graph whereas the Massey
method tailors the tightest, most form-fitting outfit to its graph.

ASIDE: PageRank and the Random Surfer

The Markov method of this section was modeled after the Markov chain that Google
created to rank webpages. The stationary vector of Google’s Markov chain is called the
PageRank vector. One way of explaining the meaning of PageRank is with a random surfer,
that like our fair weather fan, takes a random walk on a graph. As part of SIAM’s Why-
doMath? project at www.whydomath.org, a website was created containing a 20-minute
video that explains concepts such as PageRank teleportation, dangling node, rank, hyperlink,
and random surfer to a non-mathematical audience.

ASIDE: Ranking U.S. Colleges

Each year US News publishes a report listing the top colleges in the United States. Col-
lege marketing departments watch this list carefully as a high ranking can translate into big
bucks. Many high school seniors and their parents make their final college decisions based
on such rankings. Recently there has been some controversy associated with these rankings.
In June 2007, CNN reported that 121 private and liberal arts college administrators were of-
ficially pulling their colleges out of the ranking system. The withdrawing institutions called
the ranking system unsound because its rankings were built from self-reported data as well as
subjective ratings from college presidents and deans.
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The controversy surrounding the US News college rankings prompted us to explore how
these rankings are created. First, the participating colleges and universities are placed into
particular categories based on the Carnegie classifications published annually by the Carnegie
Foundation for the Advancement of Teaching. For example, the Carnegie classification of
Research I applies to all Ph.D.-granting institutions of a certain size. There are similar classi-
fications for Master’s I and Master’s II schools. Schools are only compared with those in the
same Carnegie category. Data are collected about the schools using forms from the Common
Data Set developed by US News, Peterson’s, and The College Board. Roughly 75% of this
information is numerical data, which covers seven major topics: peer assessment, retention
and graduation of students, faculty resources, student selectivity, financial resources, alumni
giving, and graduation rate. The remaining 25% comes from the subjective ratings of col-
lege presidents and deans who are queried about their peer institutions, i.e., schools in their
Carnegie classification. US News combines this numerical and subjective data using a simple
weighted mean whose weights are determined by educational research analysts.

Surprised by the simplicity of the ranking method incorporated by US News, we were
tempted to compare the US News ranking with a more sophisticated ranking method such
as the Markov method. For demonstration purposes, we decided to rank fourteen schools
that all had the same Carnegie classification. We created a single Markov matrix built from
seven matrices based on the following seven factors: number of degrees of study, average
institutional financial aid, tuition price, faculty to student ratio, acceptance rate, freshman
retention rate, and graduation rate.

Table 6.6 shows both the US News ranking (from August 2007) and the Markov ranking
for these fourteen schools. Clearly, the two rankings are quite different. Notice, for instance,

Table 6.6 College rankings by US News and Markov methods

Institution US News Rank  Markov Rank
Harvard University 1 5
Yale University 2 4
Stanford University 3 12
Columbia University 4 13
University of Chicago 5 11
Brown University 6 14
Emory University 7 10
Vanderbilt University 8 3
University of California, Berkeley 9 7
University of California, Los Angeles 10 9
Brandeis University 11 2
University of Rochester 12 8
University of California, Santa Barbara 13 6
SUNY, Albany 14 1

that SUNY went from last place among its peers in the US News ranking to first place in the
Markov ranking. Since it is hard to say which ranking is better, our point here is simply that
different methods can produce vastly different rankings. And when so much is riding on a
ranking (i.e., a school’s reputation, and thus, revenue), a sophisticated rigorous method seems
preferable.



